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FOUNDATIONS AND APPLICATIONS OF QUANTUM THERMODYNAMICS:

COUPLED DOUBLE QUANTUM DOTS HEAT ENGINES

Abstract

by Jefferson Luan Diniz de Oliveira, MSc
Universidade Federal da Paraíba

July 2021

: Cleverson Filgueiras

Quantum thermodynamics is an emergent theory in physics that investigates thermody-

namic properties of small systems where the quantum effects become relevant. This study

relies upon the proposal of a conceptual design for a quantum thermal machine using a model

of coupled double quantum dots (DQDs), each DQD with an excess electron to interact, as

the working medium.

A general review on the foundations of classical and quantum thermodynamics is pro-

vided as well as the characterization of the quantum dots used in the proposed heat engine.

The machine operates as an Otto engine in equilibrium conditions; our analysis shows the

appearance of different regimes of operations as we adjust external parameters. These op-

eration modes being the heater, the heat engine, or the refrigerator can also be alternated

when considering the effects due to the quantum tunneling of a single electron between each

quantum dot in the DQDs.

Keywords: Quantum Thermodynamics, Quantum Thermal Machines, Coupled Double

Quantum Dots, Double Quantum Dots, Quantum Dots.
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Resumo

Termodinâmica Quântica é uma teoria emergente na física que investiga as propriedades

termodinâmicas de sistemas pequenos onde efeitos quânticos se tornam relevantes. Este

estudo se baseia na proposta de uma máquina térmica quântica usando um modelo de pontos

quânticos duplos acoplados, cada ponto quântico duplo com um elétron excedente para

interagir, como a substância de trabalho.

Uma revisão geral dos fundamentos da termodinâmica clássica e quântica é fornecida,

assim como a caracterização dos pontos quânticos usados na máquina térmica proposta. A

máquina opera como um motor de Otto em condições de equilíbrio; nossa análise mostra o

surgimento de diferentes regimes de operações à medida que ajustamos parâmetros externos.

Esses modos de operação sendo o aquecedor, o motor térmico, ou o refrigerador também

podem ser alternados ao considerar os efeitos devido ao tunelamento quântico de um único

elétron entre cada ponto quântico nos pontos quânticos duplos.

Palavras-chave: Termodinãmica Quântica, Máquinas Térmicas Quânticas, Pontos Quân-

ticos Duplos Acoplados, Pontos Quânticos Duplos, Pontos Quânticos.
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INTRODUCTION

Thermodynamics emerged in the 19th century as a necessity of the Industrial Revolution,

where thermal machines were widely manufactured and used with almost no formal theoret-

ical knowledge about them. Thermodynamics focused on the macroscopic properties of the

systems and the complexity behind its microscopic details was avoided for a long time; even

when the microscopic behavior of the system became relevant, it was taken into account as

an average over the large number of elements that composed the system. Thermodynamics

also played an important role in the history of science by bringing up the famous problem

that would later motivate the emergence of a whole new branch in physics. Quantum me-

chanics was conceived from a thermodynamic inconsistency in the frequency distribution law

of black body radiation, where Planck, in 1900, as an act of despair, imposed a restriction

to the frequency of the emitted black body radiation.

Being the thermodynamics valid for large-scale macroscopic processes, we may ask our-

selves how far down can we go to rescale our system to still be able to study its thermody-

namics properties? The study of thermodynamics on this scale only became more urgent at

the end of the 20th century, when the experimental manipulation of systems composed of a

small number of atoms and ions became possible [1]. In 1959, a seminal paper by Scovil and

Schulz-DuBois demonstrated an equivalence between three-level masers and heat engines,

where the discrete energy levels of the particles’ internal energy lead to the first successful

thermodynamic approach for a quantum system [2]. This paper is considered a milestone

that started the field of quantum thermodynamics [3–5].
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Thermodynamics and quantum mechanics, at first sight, may be regarded as two distinct

theories that cannot communicate with each other. The theory of thermodynamics always

intended to be applied to macroscopic systems while quantum mechanics introduced itself as

an essential theory for the study of microscopic systems, although it is also applicable at any

scale. Quantum thermodynamics arose to establish this connection between thermodynamics

and quantum mechanics, thus enabling the study of thermodynamic processes on a smaller

scale.

In this dissertation we will present a review on quantum thermodynamics partially fo-

cused on the many faces of the laws of quantum thermodynamics [3, 4, 6–10]; we will answer

how we can establish the laws of thermodynamics for small systems where the quantum

effects start to be relevant. The description of quantum thermal machines will also be pre-

sented; we will answer how these thermal machines can be described in the quasistatic limit

[11, 12] and if one considers far from equilibrium conditions [13–15]. There are few revision

topics in quantum thermodynamics [4, 5, 13, 16, 17] and the following review comes to add

a different point of view in the literature using some recent results.

Within the context of mesoscopic systems [18], over the past few years, there has been

great interest in the study of quantum dots in different aspects, like their optical and elec-

tronic properties in the production of displays and photovoltaic devices or the context of

quantum information processing [19–21]. A quantum dot is a semiconductor particle and it

is sometimes called an artificial atom because of its similarities with a real one. The differ-

ences between them are their size (at least three orders of magnitude greater than an atom),

their shape, and the strength of the confining potential. Double quantum dots are, as the

name suggests, two quantum dots coupled in series [22, 23]. Then, it is straightforward to

understand why they are sometimes called artificial molecules. Following this reasoning, we

chose to use a model of quantum dots as the working medium for a proposal of a quantum

thermal engine; to be more specific, a system of coupled double quantum dots [24–27] is

used, where this coupling corresponds to a Coulomb interaction between electrons inside the
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double quantum dots. The calculations and results behind the proposal of this thermal ma-

chine are the main goals of this dissertation which brings original content that is organized

in a paper accepted for publication in the journal Physical Review E.

Structure of the dissertation

This dissertation is divided into four chapters as follows:

• Chapter 1 introduces a theoretical background that is required for the comprehension

of the following chapters. We start with a general description of thermodynamics, with

an emphasis in the laws of thermodynamics and the construction of thermal machines.

An overview of statistical mechanics is also provided where we will pay special attention

to its postulates in the foundations of classical and quantum statistical mechanics.

• Chapter 2 brings the recent connection between thermodynamics and quantum me-

chanics in the generalized theory of quantum thermodynamics. The role of the laws of

thermodynamics in the quantum realm will be explored together with the description

of the quantum thermal machines.

• Chapter 3 gives a short introduction to the study of the quantum dots. The com-

prehension of the quantum dots is necessary to the application in the original results

obtained in this dissertation summarized in chapter 4.

• Chapter 4 reports the original results obtained in this dissertation. Using a system of

coupled double quantum dots as the working medium, a quantum thermal machine is

proposed and a detailed description of the operation of the machine will be provided.
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Chapter One

Thermodynamics and Statistical

Mechanics

In this chapter, we introduce all the basic background concepts necessary to the develop-

ment of the following chapters. We start with a short review on classical thermodynamics,

we talk about the laws of thermodynamics and we classify the most important thermal ma-

chines operating in finite and infinite time. Next, we introduce also a short review of the

main ideas behind the theory of classical and quantum statistical mechanics, its postulates,

and the characterization of the ensembles. Finally, we discuss the validity of the foundations

of statistical mechanics and present alternative ways of constructing the statistical mechanics

without the postulate of equal a priori probability.

1.1 Thermodynamics

“ [Thermodynamics is] the only physical theory of universal content concerning which I

am convinced that, within the framework of the applicability of its basic concepts, it will

never be overthrown". These are precisely the words of the most famous physicist of the

twentieth century. Even for a genius as Einstein, misconceptions can be said and he really did

it so many times, but, as far as we know, this is not the case. The laws of thermodynamics
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have never been overthrown by any experiment since its first formulations in the 19th century,

at least not in the realm of applicability they always humbly intended to be valid.

Unlike other physical theories, like classical mechanics, electromagnetism, or even quan-

tum mechanics, thermodynamics did not start within a reductionist view of the world, it

did not start with a description of a few particles1 for then to generalize it, it does not try

to explain the macro from the micro, it already has been formulated in the limit of many

particles, and by many, I mean a huge number of particles (something like ∼ 1023 particles,

or even more).

When the English physicist James Joule performed his famous experiment in 1845, he

discovered not only that heat is a form of energy, and consequently, it could be transformed

into other forms of energy, but he was also the first one to show that energy has a physical

meaning, it is not just a mathematical concept invented by the physicists. Its experiment

consists of paddles immersed in water mounted on a vertical shaft and rotated by a cord

propelled by falling weights, as illustrated in figure 1.1. As the weights are released, the

paddles start to rotate and generates motion in the water, this motion, Joule observed, causes

an increase in the temperature of the water, in other words, the gravitational potential energy

of the weights are converted into kinetic energy of the paddles, which in turn are converted

into heat that causes an increase in the internal energy of the water. Therefore, this proves

that heat is not a fluid that flows from warm bodies to cold ones, as it was thought in the

past, but it is a form of energy and we can measure it as a physical quantity. Thus, adding

this result with the principle of conservation of energy, the first law of thermodynamics could

then be formulated: for a process in a defined system, the change in internal energy ∆U is

equal to the amount of heat absorbed Q minus the work done W ,

∆U = Q−W. (1.1)
1Only in the 19th century, the Hungary-American mathematician, John von Neumann formulated the

concept of temperature for a single particle.
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Figure 1.1 Joule’s apparatus for measuring the mechanical equivalent of heat.

Now, let us asks ourselves the following about Joule’s experiment, the first law of thermody-

namics states that it would be possible to spontaneously cool the water and use this energy

to pull the weights up, why this will never occur? There is no violation of the conserva-

tion of energy in the process described above, but something as fundamental as it is being

transgressed, the second law of thermodynamics. This law was first addressed in 1824 by

the French engineer Nicolas Sadi Carnot, but it was just precisely enunciated later in 1850

by Rudolf Clausius and, independently, by Lord Kelvin in 1851. Their formulations for the

second law of thermodynamics are enunciated as follows:

(C): Heat can never pass from a colder to a warmer body without some other change,

connected therewith, occurring at the same time.

(K): It is impossible to convert the heat from a single source into work without any other

effect.

The Clausius statement (C) forbids the existence of a "miraculous refrigerator" where a

machine could remove heat from a colder reservoir into a hotter reservoir at no cost of work,

whereas the Kelvin statement (K) forbid the existence of a "miraculous engine", where a

machine could remove heat from a reservoir and convert it entirely into work. Despite (C)

and (K) seems to state different things, they are equivalent statements. Note that these

formulations are entirely based on thermal machines, this is no accident, the 19th century
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was marked by the development of these thermal machines during the so-called Industrial

Revolution. In the next section, we will be working out these thermal machines explicitly.

1.1.1 Thermal machines

A thermal machine is a device that converts heat into work through a generic working

substance, an example is the workhorse of the Industrial Revolution, the steam engine, where

the working substance for this case is water. From (K) statement, it is clear that a single

reservoir is not sufficient to extract heat and produce work cyclically (condition required

for a machine to continuously operate), so we need two reservoirs at different temperatures2

Th > Tc, where we define Th as the temperature of the hotter reservoir and Tc as the

temperature of the colder reservoir.

Let Qh (Qc) denote the heat transferred between the hot (cold) reservoir and the working

substance. The engine must operate cyclically, so there is no variation on the internal energy

of the system (∆U = 0) at the end of each cycle because the system must return to the same

initial state, where the system here is the working substance. From equation (1.1), the total

work done by the machine W is given by

W = Qh +Qc. (1.2)

Here we have some divergences in the literature about the convention taken to denote the

sign of the heat transferred Q and the work done W, no one is right or wrong, it is only

notation’s complications. Apart from that, we will denote here Q > 0 when heat comes

from the thermal reservoirs into the system and we denote W > 0 when work is done by the

machine. Hereupon, we can note that if Qh > 0 and Qc < 0 in equation (1.2), then W > 0

if, and only if, |Qh| > |Qc|, which makes sense because for the machine perform work, we
2Even before Kelvin establish the second law of thermodynamics, this was a requirement already empir-

ically known, remember, there were already existing thermal machines before the whole theory of thermo-

dynamics was formulated.
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need more heat entering the system than leaving it, our notation is quite consistent.

An important quantity associated with the heat engine is the measurement of productivity

of our engine, how efficiently this engine is converting heat into work. This quantity is called

the efficiency of the engine and it is defined as the ratio between the work W delivered and

the energy Qh, in form of heat, consumed by the machine to operate

η =
W

Qh

=
Qh +Qc

Qh

= 1 +
Qc

Qh

, (1.3)

where we have used equation (1.2) for the work done. The heat Qc is a necessary subproduct

unreclaimed due to the second law of thermodynamics.

On the other hand, we can have a machine that operates reversely, extracting heat Qc > 0

from the cold reservoir at cost of some work W < 0 and exhausting heat Qh < 0 into the

hot reservoir. We call this machine a refrigerator. We can also measure how efficient this

machine is by calculating the ratio of the heat released from the cold heat bath Qc and the

modulus of the total work consumed W in the cycle

εR =
Qc

|W |
=

Qc

−Qh −Qc

=
−Qc

Qh +Qc

, (1.4)

where we again have used equation (1.2), remember that |x| = −x if x < 0. We call this

quantity εR the Coefficient of Performance (COP) of the refrigerator.

There is also a third possible machine to work out, the heat pump. In this machine we

have heat Qh > 0 flowing from the hot reservoir and, at cost of some work W < 0, releasing

a quantity Qc < 0 into the cold reservoir. We can also define a Coefficient of Performance

εH for this heat pump as the following

εH =
Qh

|W |
=

Qh

−Qh −Qc

=
−Qh

Qh +Qc

. (1.5)

Carnot Cycle

Even though there were already existing thermal machines, only in 1824 with the pi-

oneering work of the French mechanical engineer Nicolas Léonard Sadi Carnot, that was
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established the first thermodynamic model of a heat engine. Carnot engine consists of four

strokes of ideal thermodynamical processes, and by ideal, I mean a quasistatic process, which

is a process that occurs slowly enough for the system to changes its state without losing its

thermodynamical equilibrium condition at any time. This could take an infinite time to be

plausible, but we are idealizing this machine, we are not worried about constructing it as a

physical archetype. These ideal processes are important due to the purpose of the Carnot

engine, Carnot idealized a machine that would have the higher efficiency than any other ma-

chine operating at the same heat reservoirs, for this we could not have any kind of friction,

because friction is directly related to waste and its machine could not tolerate that. Thus we

need isothermal processes to exchange heat with the heat reservoirs without changing the

temperature of the working substance, and adiabatic processes to change the temperatures

of the working substance during the cycle without heat exchange because we want to avoid

the friction associated with the heat conduction.

We have then the following scenario guided by the Pressure-Volume diagram in figure

1.2: (1: a→b) We first have an isothermal expansion from point a to b where the system is

put in contact with the hot reservoir at temperature Th and some heat Qh is absorbed by

the system. (2: b→c) Then the system is separated from the reservoir and undergoes an

adiabatic expansion from point b to c decreasing its temperature from Th to Tc. (3: c→d)

From this point on, the system is put in contact with the cold reservoir at temperature Tc

and undergoes an isothermal compression from point c to d, where some heat Qc is released

into the reservoir. (4: d→a) Lastly, we have an adiabatic compression from point d to a,

where the system is disconnected from the reservoir and starts to increase its temperature

from Tc to Th. This closes the cycle and we could start from (1) again repeating the very

same steps. The efficiency ηC of the Carnot engine can be proven to be3

ηC = 1− Tc
Th
. (1.6)

3This is not a difficult task to be done, but it will be easier to prove after we define the concept of entropy.
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Figure 1.2 Pressure-Volume diagram of a Carnot cycle.

This is the upper limit for the efficiency of any engine operating at the same heat reservoirs

Th and Tc. The frictionless requirement of the Carnot cycle implies that this whole cycle is

reversible and we can also have a Carnot refrigerator in which we can establish an upper limit

εC = 1
Th/Tc−1

for the COP of any refrigerator, again, operating at the same heat reservoirs

Th and Tc.

Practically all thermal machines rely on, and this is important to emphasize, the com-

pressibility of the working substance4, and on the fact that a hot expansion produces more

work than the work required for a cold compression.

Otto Cycle

Even though the patent for the four-stroke engine was acquired in 1861 with the French

engineer Alphonse Beau de Rochas, only in 1876 with the German engineer Nicolaus Otto

that the spark-ignition engine was first built. This engine is probably the most popular

realizable thermal machine, it has been largely applied in many systems throughout history
4Thermoelectric devices being an exception because they are based on the Peltier-Seebeck and Thomson

effects, where there is a direct conversion of heat to electric voltage and vice versa. The reader interested in

these effects is recommended to take a look in the Ref.[28]

10



and it is still used nowadays in many cars, small planes, and also small power systems.

The Otto cycle is similar to the Carnot cycle, but instead of the isothermal processes, it

has isochoric processes, which are processes where heat can be exchanged with the environ-

ment (the reservoirs) but no variation in the volume of the system (the working substance)

is allowed. Thus, we have four strokes: (1) An adiabatic compression where the volume of

the system decreases from Vh to Vc. (2) An isochoric heat transfer from the cold reservoir to

the working substance. (3) An adiabatic expansion where the volume of the system increases

from Vc to Vh. (4) An isochoric heat transfer from the hot reservoir to the working substance.

The efficiency ηO of the Otto engine can be proven to be

ηO = 1− 1

rγ−1
, (1.7)

where r = Vh/Vc is the compression ratio and γ = Cp/Cv is the specific-heat ratio of the

working substance. The specific heat at constant pressure Cp or volume Cv are defined as

the amount of heat necessary to raise the temperature, in other words, the rate of change

Cp ≡ (∆Q/∆T )p and Cv ≡ (∆Q/∆T )v.

It is important to highlight that adiabatic processes are perfectly possible to be carried

out in practice, one way to do it is by isolating the system with thermal insulating materials,

but there is no perfect thermal insulation. The other way to do it is more plausible, we can

make the process occur very fast for the system to not have enough time to exchange heat

with the environment, this is what is done in car engines, for example.

Although some cycles are composed of irreversible processes, any thermal machine can be

reversed and be turned into a refrigerator. This may look contradictory, but it is enough to

consider an irreversible compression (expansion) instead of an irreversible expansion (com-

pression) or maybe we could control the heat transfer from the cold reservoir instead of

extracting heat from the hot reservoir, and so on. Despite we have irreversible processes,

nothing prevents us to substitute each irreversible process with its opposite (also irreversible)

process and construct a new machine that operates as a refrigerator.
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1.1.2 Finite-Time Thermodynamics

There is another important quantity of the thermal machines that were left out. This

quantity is the power output P , which is defined as the rate at which work W is performed

over time

P =
∆W

∆t
. (1.8)

Actually, for practical purposes, this quantity is even more important than the efficiency

of the machine. The reason is clear, thinking about a car engine, we are more interested

in driving at 100 km/h at a higher cost than driving at 1 km/h, no matter how much fuel

we could save with this latter more efficient engine. If we think about the Carnot engine

idealized in the previous section, this problem takes enormous proportions because we have

quasistatic processes that take infinite time (t → ∞) to occur, which means, by means of

equation 1.8, that we have a zero power output at the end of the cycle (P → 0).

As we have said in the previous section, the adiabatic process can be realizable in a

finite time, so the problem rests in the isothermal processes of the Carnot cycle. How can

we accelerate them? We must take into account the finite time at which heat is exchanged

between the heat reservoirs and the working material.

We assume that the working substance is inside a vessel with diathermal walls. If we

put the system (working substance + vessel) in contact with a reservoir, it will exchange

heat according to Fourier’s law of heat conduction. This law states that the rate of heat

conduction is proportional to the temperature difference between the objects in contact

Q̇ = kA
∆T

∆x
, (1.9)

where Q̇ is the heat flux, k is the thermal conductivity of the material, A is the cross-sectional

surface area of contact, ∆T the temperature difference, and ∆x the thickness of the material.

We are interested in the isothermal processes in the Carnot cycle, so the heat flux Q̇h

during the isothermal expansion is given by

Q̇h = α(Th − Thw), (1.10)
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where Th is the temperature of the heat source and Thw is the temperature of the working

substance at this stage. Comparing with equation (1.9), the terms that depends on the

properties of the material are all accounted in the coefficient α. Conversely, the isothermal

compression gives us

Q̇c = β(Tc − Tcw), (1.11)

where β is the heat transfer coefficient associated with the compression, Tc is the temperature

of the heat sink and Tcw is the temperature of the working substance at this stage. If the

isothermal expansion lasts a time th, the total heat absorbed during this stage by the working

substance throughout the walls of the vessel is the integral of the heat flux Q̇h

Qh = Q̇hth = αth(Th − Thw), (1.12)

where we have used equation (1.10) and the fact that the RHS of this equation has no

dependence in time. On the other hand, for the isothermal compression, a similar calculation

gives us the total heat Qc released to the heat sink

Qc = Q̇ctc = βtc(Tc − Tcw), (1.13)

where tc is the time it takes for the process to occur.

We may have accelerated the processes, but we still want our engine to be reversible, and

this is the crucial argument for the statement of the endoreversible engines [29–32]. We need

to leave the irreversible heat conduction out of play, to do so we establish a subsystem given

by a central compartment, which is responsible for the work-delivering and heat-interacting

operations. Outside of this central compartment, we have two heat exchangers connected to

the heat reservoirs where the heat conduction occurs, these heat exchangers do the role of

channels for delivering heat in and out of the subsystem. Therefore, the system as a whole

operates irreversibly, but the internal compartment operates reversibly5 (that is the reason

why we call this engines "endo-reversible"). This condition ensures that equation (1.6) is
5There is an interesting discussion about the validity of these arguments in Refs. [33–35]
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still valid and if we compare it with equation (1.3), we have the following condition

Qc

Qh

= −Tcw
Thw

,

where we use the temperatures Tcw and Thw, not the temperatures of the reservoirs Th and

Tc, because we are using the reversibility of the internal compartment6. Rearranging the

terms,
Qh

Thw
= − Qc

Tcw
. (1.14)

This condition is fundamental and controversy, but we will let this discussions off the table

for now. Therefore, we may substitute equations (1.12) and (1.13) in (1.14) to obtain

αth(Th − Thw)

Thw
= −βtc(Tc − Tcw)

Tcw
=
βtc(Tcw − Tc)

Tcw
,

or
th
tc

=
βThw(Tcw − Tc)
αTcw(Th − Thw)

≡ β(Th − x)y

α(Tc + y)x
, (1.15)

where we define x ≡ Th−Thw and y ≡ Tcw−Tc to simplify the calculus. The total time spent

in the isothermal processes is th + tc whereas for the adiabatics, say, we spent a total time

(γ − 1)(th + tc) such that ∆t = γ(th + tc) is the total time spent by the engine in the four

processes to complete a single cycle with γ being an arbitrary coefficient. The total power

output P is then

P =
∆W

∆t
=

Qh +Qc

γ(th + tc)
, (1.16)

where we have used equation (1.2) for the total work done by an engine. We can then use

the expressions for Qh and Qc (equations 1.12 and 1.13) in the previous equation for the

power output:

P =
αth(Th − Thw) + βtc(Tc − Tcw)

γ(th + tc)
,

6Lavenda’s paper [36] criticize this condition, he states that the temperatures Thw and Tcw of the system

must be replaced by the temperatures of the heat reservoirs Th and Tc.
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or, in terms of x and y,

P =
αthx− βtcy
γ(th + tc)

=
αthx− βtcy
γtc(

th
tc

+ 1)
=
αx th

tc
− βy

γ( th
tc

+ 1)
.

Using the equation (1.15) to eliminate th/tc, we obtain

P =
[
αx
(β(Th − x)y

α(Tc + y)x

)
− βy

][
γ
(β(Th − x)y

α(Tc + y)x
+ 1
)]−1

= βy
(Th − x
Tc + y

− 1
)[
γ
(β(Th − x)y

α(Tc + y)x
+ 1
)]−1

= βy
(Th − x
Tc + y

− Tc + y

Tc + y

)[
γ
(βy(Th − x)

αx(Tc + y)
+
αx(Tc + y)

αx(Tc + y)

)]−1

= βy
Th − Tc − x− y

Tc + y

αx(Tc + y)

γ[βThy + αTcx+ xy(α− β)]
,

which leads us to

P =
αβxy(Th − Tc − x− y)

γ[βThy + αTcx+ xy(α− β)]
. (1.17)

This is the power output of an endoreversible Carnot engine operating with finite time

isothermal processes. But we are interested in obtaining the maximum power output for the

Carnot engine, so we need to maximize the power function P for the temperatures Th and

Tc of the reservoirs. For this, we note that x and y will be the only variables of the system

to be optimized. Thus, to maximize P , we need the conditions ∂P/∂x = 0 and ∂P/∂y = 0

to be satisfied, which leads us to

0 =
∂P

∂x
=
αβy(Th − Tc − x− y)− αβxy
γ[βThy + αTcx+ xy(α− β)]

− αβxy(Th − Tc − x− y)[αTc + y(α− β)]

γ[βThy + αTcx+ xy(α− β)]2
,

so

[(Th − Tc − x− y)− x](βThy + αTcx+ xy(α− β))− x(Th − Tc − x− y)[αTc + y(α− β)] = 0,

simplifying some terms,

βThy(Th − Tc − x− y)− x[βThy + αTcx+ xy(α− β)] = 0,

or

βThy(Th − Tc − x− y) = x[βThy + αTcx+ xy(α− β)]. (1.18)
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An analogous calculation for the condition ∂P/∂y = 0 gives us

αTcx(Th − Tc − x− y) = y[βThy + αTcx+ xy(α− β)]. (1.19)

Taking the ratio of equation (1.19) over equation (1.18) gives us

αTcx

βThy
=
y

x
,

or

y2 =
αTcx

2

βTh
,

and, taking the positive square root, we get

y =

√
αTc
βTh

x. (1.20)

The minus square root would lead us to non-physical results (remember that x = Th−Thw > 0

and y = Tcw − Tc > 0, otherwise the heat would not flow from the source to the sink) and,

for that reason, is not considered. Adding this result to equation (1.18), we get

βTh

√
αTc
βTh

x
(
Th − Tc − x−

√
αTc
βTh

x
)

= x
[
βTh

√
αTc
βTh

x+ αTcx+ x

√
αTc
βTh

x(α− β)
]
,

or √
αβThTc

(
Th − Tc − x−

√
αTc
βTh

x
)

=
√
αβThTcx+ αTcx+ x2

√
αTc
βTh

(α− β).

Rewriting this equation in terms of µ ≡ x/Th,

Th − Tc − µTh
(

1 +

√
αTc
βTh

)
= µTh + µTh

√
αTc
βTh

+
µ2Th
β

(α− β).

Rearranging the terms, we obtain the quadratic equation

[
1− α

β

]
µ2 − 2

[√αTc
βTh

+ 1
]
µ+

[
1− Tc

Th

]
= 0, (1.21)
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whose solution is

µ =

2
(√

αTc
βTh

+ 1
)
±
√(

4αTc
βTh

+ 1 + 2
√

αTc
βTh

)
− 4
(

1− α
β

)(
1− Tc

Th

)
2
(

1− α
β

)

=

√
αTc+

√
βTh√

βTh
±
√

2
√

αTc
βTh

+
(
Tc
Th

+ α
β

)
(

1−
√

α
β

)(
1 +

√
α
β

)
=

√
αTc+

√
βTh√

βTh
±
(√

Tc
Th

+
√

α
β

)
(

1−
√

α
β

)(
1 +

√
α
β

)
=

√
αTc +

√
βTh ±

(√
βTc +

√
αTh

)(
1−

√
α
β

)(
1 +

√
α
β

)√
βTh

=

√
Th(
√
β ±
√
α) +

√
Tc(
√
α±
√
β)(

1−
√

α
β

)(
1 +

√
α
β

)√
βTh

.

From this point on, we can separate the solution in two:

µ+ =

√
Th(
√
β +
√
α) +

√
Tc(
√
α +
√
β)(

1−
√

α
β

)(
1 +

√
α
β

)√
βTh

=
1 +

√
Tc
Th

1−
√

α
β

> 1, (1.22)

and

µ− =

√
Th(
√
β −
√
α) +

√
Tc(
√
α−
√
β)(

1−
√

α
β

)(
1 +

√
α
β

)√
βTh

=
1−

√
Tc
Th

1 +
√

α
β

< 1. (1.23)

The positive solution µ+ is clearly non-physical because µ = x/Th = 1 − Thw/Th < 1, thus

equation (1.23) must be the correct solution. Putting this result into equation (1.20), we get

y =

√
αTc
βTh

Th
1−

√
Tc
Th

1 +
√

α
β

=

√
Th
Tc
− 1

1 +
√

β
α

Tc. (1.24)

Finally, the efficiency of the Carnot engine at maximum power output is given by

η = 1− Tcw
Thw

= 1− Tc + y

Th − x
. (1.25)
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Using equations (1.23) and (1.24), we obtain

η = 1−
Tc +

√
Th
Tc
−1

1+
√

β
α

Tc

Th − Th
1−

√
Tc
Th

1+
√

α
β

= 1− Tc
Th

(√
β
α

+
√

Th
Tc

)
(√

α
β

+
√

Tc
Th

)
(

1 +
√

α
β

)
(

1 +
√

β
α

)
= 1− Tc

Th

√
βTh√
αTc

√
α

β
,

which leads us to

ηCA = 1−
√
Tc
Th
. (1.26)

This equation is known as the Curzon-Ahlborn (CA) efficiency and is the main result that

we wanted to demonstrate. Despite this formula takes the names of F.L. Curzon and B.

Ahlborn for a paper published in 1975 [29], they were not the first ones to obtain it. Novikov

[37] and Yvon [38] obtained equation (1.26) some time before, assuming the temperature of

the working substance was given by the geometric mean Tm =
√
TcTh, far away from the

endoreversible model. But their result was not surprising, Thomson already showed many

years before that the performance of an engine with an unequally heated system is optimized

if the temperature of the system is exactly the geometric mean Tm [39].

Within the framework of linear irreversible thermodynamics (which was an important

milestone in the development of nonequilibrium thermodynamics) and without the endore-

versibility assumption, Van den Broeck showed in 2005 [40] that the efficiency of an engine

at maximum power output is bounded from above by the CA efficiency. Yet in the context

of irreversible thermodynamics, three years after the paper of Broeck was published, in 2008,

Schmiedl and Seifert (SS) derived a different expression for the efficiency at maximum power

output [41]:

ηSS =
ηC

2− αηC
, (1.27)

with α being associated with dissipative coupling to the hot and cold reservoirs. Only in
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2012, this discrepancy of results was solved, Y. Apertet and coworkers published a paper

[42] clarifying that ηCA and ηSS has different configurations: ηCA is associated with endore-

versibility, where dissipations are present in the connections to the thermal reservoirs, and

ηSS is associated with exoreversibility, where dissipations are present in the energy conversion

itself. Five years later, in 2017, also with Y. Apertet and coworkers, it was found a more

general expression for the efficiency at maximum power, beyond the scope of linear heat

engines, that recover the efficiencies ηCA and ηSS as special cases of this more general one,

particularly, the CA efficiency is showed to be associated with a particular case of nonlinear

heat engines [43].

To put and end to this section, coming back to the result (1.26) and leaving these discus-

sions aside, we can obtain the maximum power Pmax by substituting equations (1.23) and

(1.24) into (1.17). After some algebraic juggling we obtain

Pmax =
αβ

γ

(√
Th −

√
Tc√

α +
√
β

)2

. (1.28)

1.1.3 Clausius Theorem and The Third Law of Thermodynamics

During fifteen years, Rudolf Clausius wrote nine memoirs about the motive power of

heat, which was later collected and published as a book entitled Mechanical Theory of Heat

[44]. In his sixth memoir, first published in 1862, Clausius settled the foundations of an

important theorem that establish a mathematical expression for understanding the second

law of thermodynamics. He states that "[...] the algebraic sum of all the transformations

occurring in a cyclical process can only be less than zero, or, as an extreme case, equal

to nothing", in mathematical terms, we have the following expression valid for any cyclic

process ∮
dQ

T
≤ 0, (1.29)

where the equality holds for any reversible process, dQ is the energy flow into the system

and T is the temperature of the system when that energy is absorbed. As an corollary for
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this theorem, for any reversible process (not necessarily cyclic) operating from state A to

state B, the quantity ∫ B

A

dQ

T

is conservative, i.e., is the same for any path segment γ that starts at A and ends at B.

Indeed, if we take two reversible paths γ1 and γ2 that connects A and B, and we start a cycle

from A following the path γ1 until we get to B and then go back to A following the path γ2,

we will have, using equation (1.29), the following∫ B

A
γ1

dQ

T
+

∫ A

B
γ2

dQ

T
= 0,

but, ∫ A

B
γ2

dQ

T
= −

∫ B

A
γ2

dQ

T
,

so, ∫ B

A
γ1

dQ

T
=

∫ B

A
γ2

dQ

T
.

Thus, it is a conservative quantity and does not depend on the reversible path we choose.

This quantity can be defined as a state function S that depends only on the initial and final

states A and B ∫ B

A

dQ

T
= S(B)− S(A), (1.30)

with

S(X) =

∫ X

0

dQ

T
(1.31)

being the entropy7 of an arbitrary state X and 0 is a state of reference. An alternative

formulation of the second law of thermodynamics is that the entropy of an isolated system

never decreases

∆S ≥ 0. (1.32)

This follows from equations (1.29) and (1.30), because in an isolated system, dQ = 0, so

∆S = S(B)− S(A) ≥
∫ B

A

dQ

T
= 0.

7A name coined by Clausius in 1865, which comes from the greek “transformation”.
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The state of reference mentioned before in equation (1.31) is very complex to be defined

because we need it to be accessible for any system simultaneously. Only with the work of

the German chemist Walther Nernst at the beginning of the 20th century it was possible to

overcome this problem. Nernst theorem states that the entropy for any system in thermo-

dynamic equilibrium goes to zero as the absolute temperature of this system approaches the

absolute zero:

lim
T→0

∆S = 0. (1.33)

This is a modern formulation of the Nernst theorem that was later used by Max Planck and

nowadays is known as the third law of thermodynamics, although Nernst’s first formulations

avoided completely the concept of entropy. Therefore, this state of zero absolute temperature

is the perfect state of reference that we were looking for because the entropy is the same for

any system at this point.

1.1.4 Entropy and Helmholtz free energy

We have said that entropy is a state function, but we also need it to be an extensive

quantity, i.e., entropy must increase as we enlarge the system, if we mix two gases in equi-

librium, for example, the entropy of the resulting mixed gas must be the sum of the entropy

of each individualized gas before we mix the gases8. Hereupon, the entropy must depend

only on extensive thermodynamic quantities like energy (U), volume (V ), and the number

of particles (N), that is, S = S(U, V,N). Differentiating it, we obtain

dS =

(
∂S

∂U

)
V,N

dU +

(
∂S

∂V

)
U,N

dV +

(
∂S

∂N

)
U,V

dN (1.34)

8Actually, this specific situation lead Gibbs to formulate a famous paradox, he calculated the entropy of

the mixed gas and the resulting entropy was less than the sum of the entropy of the individual gases before

the mixing, thus violating the second law of thermodynamics. This paradox was “solved ” introducing ad hoc

a correction factor N ! that was only explained years later with the arising of quantum mechanics.
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On the other hand, the internal energy must be a function U = U(S, V,N) and, from the

first law of thermodynamics

dU = TdS − pdV + µdN, (1.35)

or, isolating dS,

dS =
1

T
dU +

p

T
dV − µ

T
dN, (1.36)

where µ =
(
∂U
∂N

)
S,V

is called the chemical potential, TdS = dQ is the infinitesimal heat ex-

changed (with T being the absolute temperature) and pdV = dW the infinitesimal work done

(with p being the pressure). Comparing equations (1.34) and (1.36), we get the equations of

state
1

T
=

(
∂S

∂U

)
V,N

, (1.37)

p

T
=

(
∂S

∂V

)
U,N

, (1.38)

µ

T
= −

(
∂S

∂N

)
U,V

. (1.39)

An also important quantity for thermodynamics is the Helmholtz free energy F , which is

defined as

F = U − TS, (1.40)

and is a function F = F (T, V,N). In simple words, the free energy is the useful energy

available to be extracted out of the system as work. Note that, as we increase the entropy

S the free energy F decreases, so the entropy does act as an exhauster of useful energy,

although no energy is lost. We also have another alternative formulation of the second

law of thermodynamics in contrast with equation (1.32), for an isolated system at constant

temperature and volume the free energy never increases

∆F ≤ 0. (1.41)
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1.1.5 Thermodynamic potentials

We may generally classify the most common thermodynamic potentials in five: the in-

ternal energy U , the Helmholtz free energy F , the enthalpy H, the Gibbs free energy G and

the grand potential ΦG.

The internal energy has the following natural variables (S, V,N) and is given by

U = TS − pV + µN, (1.42)

or, in the standard differential form (equation 1.35),

dU = TdS − pdV + µdN. (1.43)

The Helmholtz free energy has the following natural variables (T, V,N) and is given by

(equation 1.40)

F = U − TS, (1.44)

or, in the standard differential form,

dF = −SdT − pdV + µdN. (1.45)

The enthalpy has the following natural variables (S, p,N) and is given by

H = U + pV, (1.46)

or, in the standard differential form,

dH = TdS + V dp+ µdN. (1.47)

The Gibbs free energy has the following natural variables (T, p,N) and is given by

G = U + pV − TS, (1.48)

or, in the standard differential form,

dH = −SdT + V dp+ µdN. (1.49)
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The grand potential has the following natural variables (T, V, µ) and is given by

ΦG = U − TS − µN, (1.50)

or, in the standard differential form,

dΦG = −SdT − pdV −Ndµ. (1.51)

There are three equations of state for each thermodynamic potential and they can be obtained

in the same way as we did for the entropy in subsection 1.1.4.

1.2 Statistical Mechanics

Thermodynamics is a phenomenological theory based upon empirical facts that justify

its laws. On the other hand, statistical mechanics tries to explain the macroscopic aspects of

thermodynamics starting from a microscopic description of the atomic or molecular structure

of matter in equilibrium in the same empirical sense used in thermodynamics [45, 46]. Here,

equilibrium is to be understood as statistic equilibrium and it does not mean that the particles

have stopped moving, rather, only that the ensemble of particles as a whole is not evolving

in time.

We may broadly classify any equilibrium system in statistical mechanics in three different

ensembles: the microcanonical, canonical, and grand canonical ensembles.

1.2.1 Microcanonical ensemble

The microcanonical ensemble is characterized by an isolated system with a huge number

N of particles occupying a large volume V . By requiring the system to be isolated, we mean

that the energy is a constant of motion. Since we have N particles moving in three directions,

we may introduce a 6N -dimension phase space, or Γ space, of the system with 3N canonical

coordinates q1, q2, ..., q3N and 3N canonical momenta p1, p2, ..., p3N . The points in phase
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space represent microscopic states of the system, i.e., each point is a possible configuration

for the particles to be distributed. Depending on these microscopic configurations, the

system assumes different macroscopic states. Note that for any macroscopic state, we may

have an infinite number of microscopic states that satisfy the macroscopic constraints (e.g.

the energy or the volume of the system remains the same by a permutation of the positions

of two particles).

Classical statistical mechanics is sustained in the equal a priori probability postulate. This

postulate states that when a macroscopic system is in thermodynamic equilibrium, then all

of the microscopic states that satisfy the macroscopic conditions have the same probability

for the system to be found in. To justify this postulate, we recall here Laplace’s “Principle of

Insufficient Reason”, in which one said that two events are to be assigned equal probabilities

if there is no reason to think otherwise [47].

The number of microscopic states of an ensemble with energy E, volume V and number

of particles N , subjected to {Xi} constraints is given by the function W (E, V,N ; {Xi}).

Since every microscopic state that satisfies the macroscopic conditions is equally probable to

be found, then the probability P{Xi} of finding the system with the constrains {Xi} must

be directly proportional to the number of microscopic states with these constraints, i.e.,

P{Xi} ∝ W (E, V,N ; {Xi}).

In order to correctly interpret the above expression as a probability, we must normalize it

P{Xi} =
W (E, V,N ; {Xi})∑
{Xi}W (E, V,N ; {Xi})

, (1.52)

where the sum in the denominator is a sum over all possible constraints {Xi}. This way

the probability of finding the system with any possible constraint that satisfies the global

constraints (E, V,N) is the sum
∑
{Xi} P{Xi} = 1.

Let us separate our system in two different subsystems by an adiabatic, fixed and imper-

meable wall. The total number of accessible microscopic states for the composite system is
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the product

W (E = E1 + E2) = W1(E1)W2(E2), (1.53)

where W1(E1) and W2(E2) are the number of accessible microscopic states in the subsystem

(1) and (2), respectively. If we now let the separating wall to be diathermic, the energies E1

and E2 can fluctuate as long as E = E1 + E2, where E is the total energy of the composite

system. From equations (1.52) and (1.53), the probability of finding the composite system

in a state where the subsystem (1) has energy E1 is9

P (E1) =
W (E1;E)∑E
E1=0W (E1;E)

=
W1(E1)W2(E − E1)∑E
E1=0W1(E1)W2(E − E1)

. (1.54)

In general, increasing the energy E will lead to an increase in the number of states W (E).

This way W1(E1) increases while W2(E − E1) decreases, which implies that the probability

P (E1) must assume a maximum value. For convenience, let us take the logarithmic of P (E1)

and use the condition for a maximum

0 =
∂ lnP (E1)

∂E1

=
∂ lnW1(E1)

∂E1

+
∂ lnW2(E − E1)

∂E1

=
∂ lnW1(E1)

∂E1

− ∂ lnW2(E2)

∂E2

, (1.55)

where we used the fact that the denominator of equation (1.54) is a constant (has zero

derivative) and also that E1 = E − E2. This equation is the condition for finding the most

probable energy E1 of the subsystem (1) given the total energy E = E1 + E2. Equation

(1.55) is also revealing us an important condition in thermodynamics, but to comprehend it,

we need to establish the statistical connection with thermodynamics.

Boltzmann introduced the entropy as a function of the number of accessible microscopic

states

S(E) = kB lnW (E), (1.56)

where kB is the Boltzmann constant. If the system has a determined microscopic state

(W (E) = 1), the entropy for this system is null, which sustains the interpretation of entropy

9The sum
∑E

E1=0 requires the energies to be discretized, but it is also possible to generalize to it to the

continuous case [48].
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as a measure of uncertainty. Note that equation (1.53) shows that the system increases its

number of states in a multiplicative way, but entropy will follow this growth linearly, obeying

the extensive property, i.e.,

S(E = E1 + E2) = kB lnW (E1) + kB lnW (E2) = S(E1) + S(E2). (1.57)

Recalling equation (1.37), the temperature of the system can now be introduced. We then

recognize the derivatives in equation (1.55) exactly, except for a multiplicative constant,

as the temperatures of the subsystems, that is, T1 = ∂S(E1)/∂E1 and T2 = ∂S(E2)/∂E2.

This indicates that the condition for the maximum probability is also the condition for

thermodynamic equilibrium in the sense that the subsystems has the same temperature

T1 = T2.

1.2.2 Canonical and Grand canonical ensembles

Putting aside the idealization of a complete isolated system as it was required in the

microcanonical ensemble, we may let our system thermalize with a larger system, the heat

reservoir. The canonical ensemble is characterized by a system isolated by diathermic walls

that allow energy fluctuations, but no particle exchange with the reservoir is allowed. The

partition function is defined as the volume of the 6N-dimensional phase space occupied by

the canonical ensemble:

ZN(V, T ) =
1

N !h3N

∫
d3Np

∫
d3Nq exp[−βH(p, q)], (1.58)

where the factor N !h3N is introduced ad-hoc at first and can only be explained in the context

of quantum mechanics with the emergence of quantum statistical mechanics. The number

of particles N , the volume V , and the temperature T of the ensemble remain fixed as the

energy fluctuates. The factor β is sometimes called the inverse temperature and is defined

as β = 1/kBT , and H(p, q) is the Hamiltonian of the system. If the energy is discretized,
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the partition function is given by the sum

Z =
∑
k

e−Ek/kBT , (1.59)

where Ek are the discretized energies. Following the logic behind equation (1.54), the prob-

ability of finding our system with energy Ej is given by

Pj =
exp(−βEj)∑
k exp(−βEk)

. (1.60)

The connection with thermodynamics is given by the Helmholtz free energy (see equation

1.44)

F = −kBT lnZN(V, T ). (1.61)

Substituting equation (1.59) into the Helmholtz free energy, we obtain

F = −kBT ln
∑
k

e−Ek/kBT . (1.62)

From equation (1.45), we have the following expression for the entropy

S = −∂F
∂T

= kB lnZN +
1

TZN

∑
k

Eke
−Ek/kBT . (1.63)

Equation (1.60) enables us to write

− βEj = ln(ZNPj). (1.64)

Putting this into equation (1.63), we get

S = kb ln(ZNPj)

∑
k Eke

−Ek/kBT

ZN
− kB

∑
k

e−βEk

ZN
(−βEk)

= −kB
∑
k

e−βEk

ZN
ln
[exp(−βEj)

ZN

]
,

or simply,

S = −kB
∑
k

Pk lnPk. (1.65)

This expression is known as the Gibbs entropy, but in light of information theory, it is also

known as the Shannon entropy [49]. Exactly as the Boltzmann entropy, equation (1.56), it
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measures the microstates available to a system, but it has an advantage in contrast to the

Boltzmann entropy, it does not require the system to be in a single well-defined macrostate.

This way, the Gibbs entropy is seen as a generalization of the Boltzmann entropy holding

for all systems, while the Boltzmann entropy is only the entropy if the system is in global

thermodynamical equilibrium.

The Grand canonical ensemble is the final generalization in classical statistical mechanics,

it is characterized by a system delimited in a volume V in thermodynamic equilibrium with

a reservoir of heat and particle. In other words, the ensemble is in thermal and chemical

equilibrium with the reservoir. Thus, the temperature T and the chemical potential µ of

the system are fixed, but the number of particles N and the energy E of the system can

fluctuate. The grand partition function is the generalization of the partition function in

canonical ensemble with the addition of accounting for all the possible configurations of

particles in the system

Ξ(z, β) =
∞∑
N=0

zNZN(V, T ), (1.66)

with z = exp(βµ) being the fugacity of the system. If the energy is discretized, the grand

partition function is given by the sum

Ξ =
∑
k

exp(−βEk + βµNk) (1.67)

where Nk are the number of particles of the system when the energy is Ek. The probability

of finding our system with energy Ej and number of particles Nj is given by

Pj =
1

Ξ
exp(−βEj + βµNj). (1.68)

The connection with thermodynamics is given by the grand potential (see equation 1.50)

ΦG = −kBT ln Ξ(z, β). (1.69)
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1.3 Quantum statistical mechanics

Till now we have studied only the classical statistical mechanics, where almost all of its

developments were a consequence of the classical laws of motion. Recalling the classical

kinetic theory of gases, the classical statistical mechanics can be almost rigorously derived

from molecular dynamics, except for the Boltzmann assumption of molecular chaos [45].

Nonetheless, all systems in nature obey quantum mechanics. Thus, there must be a more

general theory valid in the quantum mechanics regime, where the classical statistical me-

chanics can be obtained in the corresponding limits. This theory is the quantum statistical

mechanics.

The state of a quantum system, which is also the quantum microstate, is a vector |ψ〉

in infinite dimensional Hilbert space. An observable in quantum mechanics is a hermitian

operator, which has real eigenvalues. Any state |ψ〉 can be written as a linear superposition

of eigenstates of any observable. In particular, it can be expressed in terms of the energy

eigenstates |ψn〉 of the Hamiltonian Ĥ of the system

|ψ〉 =
∑
n

cn |ψn〉 , (1.70)

where the coefficients cn are in general time-dependent and the energy eigenstates |ψn〉

satisfies Ĥ |ψn〉 = En |ψn〉, with En being the eigenenergies. The expectation value of an

observable Ô is given by

〈Ô〉 =
〈ψ| Ô |ψ〉
〈ψ|ψ〉

. (1.71)

Using equation (1.70), the expectation value of Ô can be written as

〈Ô〉 =

∑
m

∑
n c
∗
mcn 〈ψm| Ô |ψn〉∑

m

∑
n c
∗
mcn 〈ψm|ψn〉

=

∑
m

∑
n c
∗
mcn 〈ψm| Ô |ψn〉∑
n c
∗
ncn

, (1.72)

where we have used the orthonormality of |ψn〉. It is known that macroscopic systems are

never perfectly isolated systems since they are always interacting with the environment,

although in general this interaction is extremely weak. Therefore, since we are dealing with
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an ensemble of particles, which are large (macroscopic) systems10, the most rigorous thing to

do is to consider in our calculations the state of the system plus the environment combined.

The state (1.70) should be written as the following

|ψ〉 =
∑
n

bn |ξn〉 ⊗ |ψn〉 , (1.73)

where the states |ξn〉 are representing the states of the environment. Despite equation (1.73)

is the most correct way of considering the state of our system, equation (1.70) can still be

a valid representation of the state |ψ〉 if we identify the coefficients cn as bn |ξn〉. Following

this reasoning, equation (1.72) is also still valid, provided that the product c∗mcn is identified

as b∗mbn 〈ξm|ξn〉.

Equation (1.72) gives us the expectation value of the observable Ô at any instant of time.

However, we are interested here in measuring thermodynamic properties of an ensemble of

particles and these measurements are never instantaneous. This way, what we are truly

measuring is an average time value of the observable. Therefore, the correct quantity that

we are actually measuring must be

〈Ô〉 =
〈ψ| Ô |ψ〉
〈ψ|ψ〉

=

∑
m

∑
n c
∗
mcn 〈ψm| Ô |ψn〉∑
n c
∗
ncn

. (1.74)

In general, the terms c∗mcn cannot be directly calculated, since they involve all the states of

the environment, and its interaction with the system (remember that cn = bn |ξn〉), which

makes the calculation extremely difficult. Faced with these difficulties in calculating these

terms, we are now able to enunciate the postulates of quantum statistical mechanics. These

postulates are concerned with the form of the coefficients c∗mcn when equation (1.74) refers

to a macroscopic observable of a macroscopic system in thermodynamic equilibrium.
10If you get confused here from the use of quantum mechanics in macroscopic systems, remember that

the particles considered here are inherently quantum and quantum effects can be important even in the

macroscopic regime. As an example, if we have a gas of free electrons, which are fermions, then things like

Pauli’s exclusion principle are important for them.
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Previously we said that the system interacts weakly with the environment, this makes

the energy of our system to be approximately constant. In other words, its energy must

lie between E and E + ∆ (with ∆ � E). This way we write the postulates of quantum

statistical mechanics as the following

Postulate of Equal a Priori Probability

c∗ncn =


1 (E < En < E + ∆)

0 (otherwise)
(1.75)

Postulate of Random Phases

c∗mcn = 0 (m 6= n) (1.76)

The postulate of equal a priori probability (equation 1.75) is telling us that the probability

of finding any state |ψn〉 satisfying the constraint for energy is the same (equiprobable states)

and that any state that does not satisfy the global constraint is not allowed to be found.

Unlike the postulate of equal a priori probability, the postulate of random phases brings

a purely quantum contribution to the foundations of statistical mechanics. It is not enough

that the energy eigenstates are equiprobable, these states must also be in an incoherent

superposition, and equation (1.76) is telling us exactly this. The incoherent superposition

is necessary because the system is weakly interacting with the environment without ex-

changing energy, this way the decoherence plays an important role in killing the quantum

superpositions of energy eigenstates of the system.

As a consequence of these postulates the state |ψ〉 of the system be written as

|ψ〉 =
∑
n

an |ψn〉 , (1.77)

where

|an|2 =


1 (E < En < E + ∆)

0 (otherwise)
(1.78)

32



The expectation value for an observable Ô may also be reformulated in terms of these

coefficients an as the following

〈Ô〉 =

∑
m

∑
n |an|2 〈ψm| Ô |ψn〉∑

n |an|2
. (1.79)

The ensemble defined by the previous postulates is the microcanonical ensemble.

At this point, it is interesting to reformulate the preceding discussion in term of the

density operator, instead of quantum states. The density operator associated with the state

|ψ〉 is defined by

ρ̂ =
|ψ〉 〈ψ|

Tr{|ψ〉 〈ψ|}
, (1.80)

where Tr{...} stands for the trace over a complete set of states. If |ψ〉 is normalized, then

Tr{|ψ〉 〈ψ|} = 1. Using equation (1.77) together with (1.75) and (1.76), the density operator

can be written as

ρ̂ =
∑

E<En<E+∆

|ψn〉 〈ψn| . (1.81)

Taking the trace of ρ̂, we obtain the states whose energy lies between E and E + ∆:

Trρ̂ ≡ Γ(E). (1.82)

This way, the connection with thermodynamics is established with the identification of en-

tropy as

S(E, V ) = kB log Γ(E), (1.83)

where V is the volume of the system and kB is the Boltzmann’s constant. In this formalism,

the expectation value of an observable Ô is given by

〈Ô〉 = Tr{ρ̂Ô}. (1.84)

Choosing the energy eigenstates of the system to take the trace, one gets

〈Ô〉 =
∑
n

〈ψn| ρ̂Ô |ψn〉 =
∑
n

〈ψn| ρ̂

(∑
m

|ψm〉 〈ψm|

)
Ô |ψn〉 =

∑
n,m

ρnm 〈ψm| Ô |ψn〉 , (1.85)
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where we have used the completeness relation
∑

m |ψm〉 〈ψm| = Î. The term ρnm = 〈ψn| ρ̂ |ψm〉

is called the density matrix of the system. Comparing equations (1.85) and (1.79), we rec-

ognize the density matrix as

ρnm =
|an|2∑
n |an|2

δnm. (1.86)

Using equation (1.78), we can also write the microcanonical density matrix as

ρnm =


1

Γ(E)
(E < En < E + ∆)

0 (otherwise)
(1.87)

The Canonical ensemble can be described following the same reasoning as in the classical

statistical mechanics. The canonical density matrix is then

ρnn =
e−βEn

Z
, (1.88)

where

Z =
∑
n

e−βEn (1.89)

is the canonical partition function and β = 1/kBT . The elements out of the diagonal of the

density matrix is zero. The ensemble average of the observable Ô is then

〈Ô〉 =
1

Z

∑
n

e−βEn 〈ψn| Ô |ψn〉 . (1.90)

In contrast, the grand canonical ensemble is described by the density matrix

ρii =
e−β(Ei−µNi)

Ξ
, (1.91)

where

Ξ =
∑
i

e−β(Ei−µNi) (1.92)

is the grand canonical partition function and µ is the chemical potential. In short, the only

assumptions we made were the two postulates of quantum statistical mechanics, and from

them, we can even obtain all the laws of thermodynamics. This way, these postulates can

be seen as something even more fundamental than the laws of thermodynamics.
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1.4 Fundamental postulate of statistical mechanics

Even nowadays the foundations of statistical mechanics are still a subject of debate. At

this point, we give a brief overview of the most controversial issue in statistical mechanics,

which is the validity of the fundamental postulate of statistical mechanics: the postulate

of equal a priori probability. Present in both classical and quantum perspectives, the only

justification till now that we gave for this postulate was the principle of insufficient reason.

However this assumption may appear just as arbitrary as any other that might be made,

we have no reason to assign weights for the probabilities of certain microstates, but we also

have no reason to consider all of them with the same probability weight.

With the great advance provided by the development of the information theory by Shan-

non, it is shown that the usual computational rules for the statistical mechanics, starting

with the determination of the partition function, are an immediate consequence of the so-

called maximum-entropy principle [47]. The work of Shannon gives the entropy a more

general status, independent of thermodynamics. This enables us to take the entropy as our

starting concept, in contrast to the previous approach where the identification with entropy

was made only at the end to establish the connection with thermodynamics.

The principle of maximum entropy may be regarded as an extension of the principle

of insufficient reason, and it states that the probability distribution (p1, ..., pn) that better

represents a system in equilibrium is the one in which the Shannon entropy H(p1, ..., pn) =

−
∑

i pi ln pi is maximum. The advantage of the principle of maximum entropy is that it is

a positive statement that accounts for every situation that is not absolutely excluded by the

given information and determines uniquely the correct probability distribution, in contrast

to the principle of insufficient reason that is based on the negative statement that “there was

no reason to think otherwise”.

Therefore, we are eliminating the only assumption of classical statistical mechanics not

contained in the laws of mechanics. With this statement, the statistical mechanics is no
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longer dependent on physical hypotheses and it seems now that it may be considered as a

form of statistical inference rather than a physical theory.

Beyond the maximum-entropy principle, we also have the notion of typicality. In fact,

there is a quantum-mechanical approach for the statistical mechanics where the postulate

of equal a priori probability can be proved, not postulated [50]. This is done by simply

considering the effect of entanglement between the system and its environment, which implies

the lack of information that will give the canonical density matrix for the system. Thus

the principle of equal a priori probability should be replaced by the principle of canonical

typicality, where thermalization emerges as a consequence of typicality [51].
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Chapter Two

Quantum Thermodynamics

In this chapter, we enter the main topic of this dissertation: the quantum thermody-

namics and, in particular, the study of quantum thermal machines. We start our study

by enunciating and discussing the many faces of the laws of quantum thermodynamics in

several situations, which are a generalization toward the miniaturization into the quantum

realm of operation. We then define what is now acceptable as a quantum heat engine for

closed unitary dynamics and also for regimes beyond the equilibrium conditions, for that we

state the quantum thermodynamical processes that compose the cycle of operation of the

engines and we show what is the quantum analog of a Carnot and Otto cycle. We analyze

the dynamics of the thermodynamics processes and how the friction appears as we acceler-

ate these processes. We finish with a discussion about the violation of the thermodynamic

Carnot bound for the efficiency of a heat engine.

2.1 The Laws of Quantum Thermodynamics

During the early development of solid state lasers, more precisely in 1959, Scovil and

Schulz-DuBois published a paper in the famous Physical Review Letters where they identify

that three-level masers can be regarded as heat engines [2]. The main conceptual difference

between these and conventional heat engines is that the three-level maser presents a discrete
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energy spectrum while the conventional heat engines operate with a continuous spectrum of

energies. However, if a three-level maser can be regarded as a heat engine, which is a cyclical

operation, then it can be reversed to operate as a refrigerator. Following this logic the Maser

cooling was proposed still in 1959 [52] and, years later, in 1967, so was the Laser cooling

[53]. Only in 1975 the work of Wineland and Hänsch [53, 54] reinvented Laser cooling in a

way that does not mention any thermodynamic arguments.

This pioneering work by Scovil and Schulz-Dubois started the search for the quantum

thermal machines, which was the beginning of the emergence of the whole research area of

quantum thermodynamics [3, 5, 55].

We may ask ourselves, if the quantum statistical mechanics (QSM) is already a successful

theory that, from only two fundamental postulates, recovers the laws of thermodynamics and

also lead to definite formulas for all the thermodynamic functions of a given substance, why

we would be concerned in searching for a quantum thermodynamics (QT) theory? Well, the

theory of quantum thermodynamics is not interested in recovering the laws of thermodynam-

ics in the macroscopic world from the microscopic world of quantum mechanics in the same

way as the QSM does, the QT is mostly interested in obtaining a description of the laws of

thermodynamics in the microscopic regime, the QT is interested in talking about heat, work,

and entropy or even building a heat engine (a quantum one). Not only that, but the QT

uses an important ingredient to study thermodynamical processes, which is the dynamics

(a missing concept in the theory of QSM), here we are leaving with slow steps the close-to-

equilibrium condition and we are entering into the theory of finite-time thermodynamics [56,

57] in the quantum mechanics framework.

2.1.1 The 0-Law

The zeroth law of thermodynamics is basically a transitivity relation pairwise between

three objects: If A and B are in thermal equilibrium with C, then A is also in thermal
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equilibrium with B. A thermal equilibrium condition is trivial in classical thermodynamics,

if we put two macroscopic systems in contact they will exchange heat (from the hotter to

the colder one), after waiting enough time they will thermalize (i.e., the energy flow will

be interrupted) and reach the same temperature, so ‘thermal equilibrium’ condition is a

synonym of ‘equal temperature’ condition.

When we go to the domain of quantum mechanics, things are not quite the same. First

of all, we must separate two possible cases: When the quantum system is weakly coupled to

a thermal bath such that there is no system-bath entanglement and the system can be fully

described by local operators, and when the system is strongly coupled to a thermal bath,

where there is a nonequilibrium evolution with no universal definition of temperature and

we must appeal to trying to define effective temperatures at all times (which is not always

a possibility).

System-bath weak coupling

If a quantum system is weakly coupled to a thermal bath obeying a Markovian dy-

namics, then the system and environment can be considered as uncorrelated during the

evolution process and the system’s density operator ρ̂s evolution follows from Lindblad-

Gorini-Kossakowski-Sudarshan (LGKS) master equation

d

dt
ρ̂s(t) = − i

~
[Ĥs, ρ̂s] +

∑
k

γk

(
L̂kρ̂sL̂

†
k −

1

2
{L̂†kL̂k, ρ̂s}

)
, (2.1)

where the operators L̂k are system operators, commonly called the Lindblad operators, and

the γk are specific dimension constants in order to make the L̂k dimensionless.

In this scenario of weak coupling, a system in a nonequilibrium dynamics must obey the

Kubo-Martin-Schwinger (KMS) stability criterion for thermal equilibrium [58, 59], where

the transport coefficients (recalling, e.g., the transport equation of kinetic theory) are put in

terms of equilibrium time correlation functions1. KMS condition implies that, at equilibrium,
1These functions, also called Green functions, were first introduced by R. Kubo [58] in an attempt of
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there is no heat flux between the system and bath.

Established the thermal equilibrium condition (the details behind the KMS condition are

awfully complex and, hence, out of the scope of this dissertation), the zeroth follows straight-

forward. Just consider a network of baths (Ba, Bb, ...) connected by systems (S1, S2, ...), for

simplicity we take only three of each such that, in the weak coupling limit (WCL), we have

ρ̂ ≈ ρ̂s1 ⊗ ρ̂s2 ⊗ ρ̂s3 ⊗ ρ̂ba ⊗ ρ̂bb ⊗ ρ̂bc , (2.2)

and the hamiltonian

Ĥ = Ĥs1 + Ĥba + Ĥs1ba + Ĥs1bb + Ĥs1bc + Ĥs2 + Ĥbb + Ĥs2bb + Ĥs2ba + Ĥs2bc

+Ĥs3 + Ĥbc + Ĥs3bc + Ĥs3ba + Ĥs3bb .

(2.3)

Equation (2.2) states that there is no correlation between the systems and the baths, thus

KMS condition establishes the thermal equilibrium between the system S1 with the bath Ba,

for example, and between the system S2 with the bath Bb, so we can assign temperatures

for them. Now if the systems S1 and S2 are also in thermal equilibrium with the bath Bc

(which is the bath coupled to the system S3), then S1 is in thermal equilibrium with S2 and

we have obtained the zeroth law of quantum thermodynamics.

System-bath strong coupling

Apart from the WCL, we can have a situation with the system and the heat bath strongly

interacting in such a way that the approximation (2.2) is no longer valid, thus the system

and the bath are entangled and the system’s internal energy must contain the interaction

energy. First of all, there is no universal definition for temperature that is independent of

the specific features of the body, despite it is quite easy to establish the temperature of

any equilibrium state (exceptional cases like systems with negative heat capacity being the

exception), this is not the case of a nonequilibrium state.

generalizing quantum statistical mechanics to treat irreversible processes.
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As we have previously seen, a nonequilibrium evolution of a system weakly coupled to a

thermal bath obeys the KMS stability criterion and at the end of this evolution process, the

system will be in thermal equilibrium with the bath and its temperature will be exactly the

temperature of the bath. When we have a strong coupling between the system and the bath,

things got a little bit complicated. We may still establish a thermal equilibrium condition,

but the notion of temperature is lost and we have to resort to defining effective temperatures,

which is not always possible.

As a special case, there is a recent result [60] about Gaussian quantum open systems

strongly coupled to a heat bath, where a definition of nonequilibrium free energy is proposed

and, with it, a time-varying effective temperature T ∗. A Gaussian state [61] can be defined by

a bosonic system if its Wigner function [62, 63] is Gaussian, or, equivalently, if its Husimi-

Q function [64, 65] is a Gaussian function of the coherent state variables2. Putting the

complications behind the theory of Gaussian states aside, beyond the definition of an effective

temperature for such systems, it was shown that the effective temperature T ∗, after the

equilibration3 with a heat bath, is slightly higher than the bath temperature TB depending on

the strength of the coupling. Thus, if a second Gaussian system is put into contact within the

exact same heat bath until it reaches the equilibrium, the effective temperature may not be

the same as T ∗. This is the fundamental result that Hsiang and Hu [10] brought us, the zeroth

law in the strong coupling limit can only be valid if we state the transitivity relation only

within the framework of equilibrium (again, not thermal equilibrium) conditions, equilibrium

is not the same as equal temperatures. Therefore, for strong coupling thermodynamics, the

zeroth law of thermodynamics is established in terms of equilibrium between the bodies, but

they are not necessarily with the same temperature.
2The Husimi-Q function is the Weierstrass transform [66] of the Wigner function.
3Note that we are being very careful in distinguishing equilibrium from thermal equilibrium, thermalization

demands more than equilibration, a system thermalized assume the canonical distribution form for the

reduced density matrix, this would be our case if the coupling constant is small enough.
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2.1.2 The I-Law

The first law of quantum thermodynamics is, like its classical counterpart, a statement

about the conservation of energy and how it is transformed into heat or work during local

changes in the system, which are the only two forms of energy transfer if there is no matter

exchange with the environment. For the case of an unitary dynamics, there are two main

different ways to approach the first law of quantum thermodynamics: from the classical

definition of work and from the classical definition of heat.

Classical work approach

Let us consider the working substance as an arbitrary quantum system with a discrete

energy spectrum, although is possible to generalize it to the infinite number of energy levels

case [11]. The Hamiltonian of the working substance will be

Ĥ = Ĥ
(∑

n

|n〉 〈n|
)

︸ ︷︷ ︸
Î

=
∑
n

Ĥ |n〉 〈n| =
∑
n

En |n〉 〈n| , (2.4)

where |n〉 is the nth energy eigenstate corresponding to the eigenenergy En. To obtain the

internal energy U of the system, we need an average over the Hamiltonian

U ≡ 〈Ĥ〉 = tr{ρ̂Ĥ} =
∑
n

〈n| ρ̂Ĥ |n〉 =
∑
n

PnEn, (2.5)

with Pn = 〈n| ρ̂ |n〉 being the occupation probability of the corresponding energy level En

and ρ̂ is the system’s density operator. Note that, and this is important, we have chosen the

energy eigenstate basis {|n〉} when calculating the trace operation. If we differentiate the

previous equation, we get

dU =
∑
n

(EndPn + PndEn). (2.6)

Recalling equation (1.1), to know, dU = d̄Q + d̄W , our first reaction is to compare it with

equation (2.6) and find the associations for d̄Q and d̄W . Following the classical concept

of work, which is associated with modifications in generalized coordinates, which in turn
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is associated with the change in the energy spectrum En in quantum mechanics, we must

assign the work as

d̄W =
∑
n

PndEn, (2.7)

then, it follows that

d̄Q =
∑
n

EndPn. (2.8)

Classical heat approach

Now we are interested in approaching the I-law in a different perspective, we still keep our

system with a discrete energy spectrum, however, instead of expanding the internal energy

in the eigenenergy basis, we choose the eigenstate basis of the density operator {|k〉}. Then,

in this scenario, we have

U ≡ 〈Ĥ〉 = tr{ρ̂Ĥ} =
∑
k

〈k| ρ̂Ĥ |k〉 =
∑
k

ρkεk, (2.9)

where ρk = 〈k| ρ̂ |k〉 and εk = 〈k| Ĥ |k〉 is the kth diagonal element of Ĥ in the {|k〉} basis.

Differentiating the previous equation, we obtain

dU =
∑
k

[εkdρk + ρkdεk]. (2.10)

Recalling the von Neumann entropy S = −kBtr{ρ̂logρ̂} = −kB
∑

k ρklogρk, if we differenti-

ate it, we obtain

dS = −kB
∑
k

[logρkdρk + dρk] = −kB
∑
k

[logρkdρk], (2.11)

where we have used the trace-preserving property
∑

k ρk = 1, which leads to
∑

k dρk = 0.

Now we are able to invoke the classical definition of heat, which states that heat corresponds

to a change in the internal energy accompanied by a change in the entropy of the system.

Therefore, equations (2.10) and (2.11) leads us to identify heat as

d̄Q =
∑
k

εkdρk, (2.12)
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and, consequently,

d̄W =
∑
k

ρkdεk. (2.13)

Reformulating the I-law

We have shown two different ways to approach the I-law, but are they consistent with

each other? Well, we have used two different eigenstate basis to obtain the expressions for

the heat and work, it is straightforward that we could simply take any pair of these equations

and perform a change of basis to see the equivalence (or not) of both formalisms. Let us

first start with equation (2.12) and rewrite it as the following

d̄Q =
∑
k

εkdρk =
∑
k

〈k| Ĥ |k〉 dρk =
∑
k

〈k| Ĥ
[∑

n

|n〉 〈n|
]
|k〉 dρk

=
∑
k

〈k|
[∑

n

En |n〉 〈n|
]
|k〉 dρk,

where we have used the completeness relation Î =
∑

n |n〉 〈n|. If we define cn,k = 〈n|k〉, then

we can write

d̄Q =
∑
k,n

En|cn,k|2dρk. (2.14)

On the other hand, if we start with equation (2.8), we obtain

d̄Q =
∑
n

EndPn =
∑
n

End(〈n| ρ̂ |n〉) =
∑
n

End(〈n| ρ̂
[∑

k

|k〉 〈k|
]
|n〉)

=
∑
n

End(〈n|
[∑

k

ρk |k〉 〈k|
]
|n〉) =

∑
n

End
(∑

k

ρk|cn,k|2
)

=
∑
n,k

En|cn,k|2dρk +
∑
n,k

Enρkd[|cn,k|2],

or simply, using equation (2.14),

d̄Q = d̄Q+ d̄C, (2.15)

where we define the quantity d̄C as

d̄C =
∑
n,k

Enρkd[|cn,k|2]. (2.16)
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If we do this very same analysis for the work in equations (2.7) and (2.13), we obtain

d̄W = d̄W + d̄C. (2.17)

Equations (2.15) and (2.17) answer our question, both formalisms are equivalent only if the

quantity d̄C that we have defined is zero, i.e., if the coefficients cn,k are constants. After all,

the quantity d̄C is present in both expressions for heat and work, but what is its nature? Is

the addition of extra heat into the system? Is it a realization of extra work into the system?

Well, our first thought is that it can not be both (work and heat) at the same time, so

it must be neither of them. Equation (2.16) also shows us that d̄C does not depend directly

on dEn or dρk, so, again, it confirms our hypothesis that it can not be work or heat. This

quantity depends on the variation of the quantity |cn,k|2 = | 〈n|k〉 |2, associated with the

projection of the vectors of the {|k〉} basis in the vectors of the {|n〉} basis, and such a

variation occurs if the quantum coherence of the system also varies, but in time [67, 68].

Thus, C(t) is the quantity that describes the quantum coherence of the system and can be

explicitly calculated if we integrate in time the equation (2.16):

C(t) =
∑
n,k

∫ t

0

(Enρk)
d

dt′
|cn,k|2dt′. (2.18)

This is a remarkable result obtained by Bertúlio [9], where he then propose since there is

no classical analog for the quantum coherence, a redefinition of the first law of quantum

thermodynamics as

dU = d̄W + d̄Q+ d̄C, (2.19)

where the coherence is recognized as a source, in the same level as work and heat, of the

variation of internal energy of the system. Note that if we use the equations (2.15) and

(2.17) to write dU in terms of d̄Q and d̄W , the I-law would still be written in the same form

(dU = d̄W + d̄Q+ d̄C).
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The I-law in the Markovian dynamics regime

Beyond the regime of an unitary dynamics, we can let the system interact with the bath

in such a way that there is an entropy increase, but without leaving the weak coupling

regime. Also, at this point, we restrict ourselves to a Markovian dynamics.

If we recall the evolution of an arbitrary operator Â, in the Heisenberg picture, we have

d

dt
Â =

i

~
[ĤS, Â] +

∑
j

(
V̂jÂV̂

†
j −

1

2
{V̂jV̂ †j , Â}

)
+
∂Â

∂t
, (2.20)

with V̂j as system operators and ĤS the hamiltonian of the system. In order to obtain the I-

law of quantum thermodynamics, we will insert the system hamiltonian, ĤS, in the previous

equation, obtaining

d

dt
ĤS =

i

~
[ĤS, ĤS] +

∑
j

(
V̂jĤSV̂

†
j −

1

2
{V̂jV̂ †j , ĤS}

)
+
∂ĤS

∂t
.

Taking the expectation value and noticing that the commutator of any operator with itself

is zero, we have the following

d

dt
〈ĤS〉 =

〈∑
j

(
V̂jĤSV̂

†
j −

1

2
{V̂jV̂ †j , ĤS}

)
+
∂ĤS

∂t

〉
,

or, using the linearity of the trace (remember that 〈Â〉 = tr[ρ̂S(t)Â]),

dES
dt

=
∑
j

〈
V̂jĤSV̂

†
j −

1

2
{V̂jV̂ †j , ĤS}

〉
+
〈∂ĤS

∂t

〉
, (2.21)

where ES is the system’s internal energy. Equation (2.21) illustrate the dynamics of the

system, we know from the first law of thermodynamics that a change in the internal energy is

only associated with an exchange of heat and work between the system and the environment4,

but in contrast to dU = d̄Q + d̄W , we have a derivative of the internal energy in time, so
4We are here purposefully leaving aside the discussion about the role of coherence in the first law, mostly

because there are no studies about the subject for Markovian dynamics in the same manner as we early

elucidate it.
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instead of heat and work, we will have heat currents Jj and power P :

dES
dt

=
∑
j

Jj + P , (2.22)

with the identifications

Jj =
〈
V̂jĤSV̂

†
j −

1

2
{V̂jV̂ †j , ĤS}

〉
, (2.23)

and

P =
〈∂ĤS

∂t

〉
. (2.24)

Equations (2.23) and (2.24) represent the dynamical version of the first law of quantum

thermodynamics in the Markovian regime. The problem behind using only LGKS gener-

ators (equation 2.1) lies in the fact that they are not unique, there is some arbitrariness

of accounting for the system bath interaction energy in ĤS. In order to solve this non-

uniqueness problem, some extra restrictions must be imposed for the dynamics generator,

which is, again, not in the scope of this dissertation (see Ref.[55]).

2.1.3 The II-Law

The second law of thermodynamics is a statement about the irreversibility of some pro-

cesses in nature, it is related to the time-reversal symmetry breaking. This is a very curious

property in thermodynamics because the majority of the most important physical theories

have time-reversal symmetry. Trying to enunciate the II-law of thermodynamics in the

quantum regime can be a very tough task, as we will be seeing next.

Equilibrium states

We first start with a discussion about the II-law in equilibrium states for quantum sys-

tems. A passive state is defined as a state ρ̂ that satisfies

tr(ρ̂Ĥ) ≤ tr(Û ρ̂Û †Ĥ), (2.25)
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where Û is an arbitrary unitary operator. In quantum mechanics, a reversible dynamics

is directly related to unitary maps, thus, requiring the dynamics operator Û to be unitary

is a requirement for the evolution to be reversible. An example of a passive state is the

Gibbs state, which corresponds to a state in thermal equilibrium with a heat bath at a fixed

temperature.

The inequality (2.25) is telling us that the internal energy (remember that 〈Ĥ〉 = tr(ρ̂Ĥ))

of the equilibrium state, represented by the passive state ρ̂, can only increase and, therefore,

that no work can be extracted from the system by such procedure. This is a quantum analog

of Kelvin’s statement of the II-law, in which it says that no work can be extracted from a

single heat source at a fixed temperature in a cyclic process. Therefore, we can enunciate the

II-law of quantum thermodynamics: Starting with a passive state, no energy can be extracted

by any unitary map.

The role of entropy

In classical thermodynamics, the entropy S is a state function associated with a concrete

process in which, for a closed system, can never decrease (∆S ≥ 0), and by a concrete process

we mean that the increase in entropy is inherent to the process, it is independent on how we

see or measure it.

In contrast, in quantum mechanics we do not have a single universal definition for entropy

as it was in classical thermodynamics, the entropy will depend on how we measure the

system and how much information we may gather from this measurement. The entropy of

an observable Ô, with spectral decomposition Ô =
∑

k αk |αk〉 〈αk|, is the Shannon entropy

with respect to the possible outcomes

SO = −
∑
k

pk ln pk, (2.26)

where pk = tr(ρ̂P̂k) is the probability of measuring αk, ρ̂ is the system’s density operator

that we are measuring and P̂k = |αk〉 〈αk| is the projector over |αk〉 state. Note that we
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have settled dimensionless units for the entropy (simply taking kB = 1). Nonetheless, if

there is such a variety of entropies depending on how much gathered information we may

acquire from a measurement, there must be an optimal observable that maximizes the total

information gathered and, therefore, minimizes its entropy. The entropy of this optimal

observable is termed the von Neumann entropy Svn and is given by

Svn = −tr{ρ̂ ln ρ̂}. (2.27)

Note that Svn is a function of the eigenvalues of ρ̂, this means that any unitary evolution

acting on ρ̂ will not change the von Neumann entropy, Svn(Û ρ̂Û †) = Svn(ρ̂), because unitary

transformations does not affect the eigenvalues of ρ̂. Hereupon, the reversible dynamics of

the unitary evolution maps can not increase or decrease the (von Neumann) entropy of the

system, this is in line with the original concept of entropy in classical thermodynamics.

Another feature of the classical concept of entropy is that it is additive, the entropy of a

system is the sum of the entropies of its subsystems. However, entropy in quantum mechanics

is not additive unless the system state is composed by a tensor product of its subsystems,

ρ̂ =
∏

j ⊗ρ̂j, which, in general, is not the case, the subsystems may be entangled and when

this happens, the sum of the entropies of the subdivisions are greater than the total von

Neumann entropy. As an example, we know that the entropy of a pure state is zero because

there is no uncertainty in this state, but if this pure state is composed by subdivisions

entangled, then it is easy to see that the sum of the entropies associated with the local

measurements in the subdivisions is greater than zero.

Non-equilibrium states

In the context of classical thermodynamics, entropy is a function of equilibrium, it can not

be well defined for a system experiencing non-equilibrium dynamics, we may only calculate

the entropy immediately before and after the non-equilibrium evolution and, in this way,
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calculate how much of entropy was produced5. However, the entropy production for a closed

system can be negative, mathematically speaking there is a finite possibility for it to occur,

but this does not violate the II-law because, physically speaking, this possibility is absurdly

improbable, and the average entropy production is always nonnegative.

The fluctuating theorems bring us new insights into the entropy production under non-

equilibrium dynamics. Therefore, the second law of thermodynamics must be reformulated

in terms of these fluctuating theorems that started the field of stochastic thermodynamics

[70, 71], these theorems can also be naturally translated into the quantum regime [72, 73].

2.1.4 The III-Law

There are two formulations for the third law of thermodynamics, both of them were orig-

inally stated by Walther Nernst during the years 1906-12. The first one is the Nernst heat

theorem, which states that the entropy of any pure substance in thermodynamics equilibrium

goes to zero as the temperature approaches zero. The second one is the unattainability prin-

ciple, which states that it is impossible by any procedure to cool any system to absolute zero

temperature in a finite number of operations. In contrast to the Nernst heat theorem, which

is a formulation of the third law in a purely static regime (equilibrium), the unattainability

principle is a dynamical version for the third law, which is a more restrictive formulation

that imposes limitations on the interaction between the system and bath.

Trying to enunciate the third law of thermodynamics in the context of quantum open

systems is, as usual, not an easy task and it is still an active source of discussions. Levy

and collaborators [74] demonstrated the unattainability principle in the context of quantum

refrigerators and Ref. [75] do the same thing using quantum resource theory [76], but Ref.

[77] criticize this principle and claims proof of its violation, stating that only Nernst heat
5It turns out that in nonequilibrium statistical mechanics it is possible, for example, to define an entropy

function for a finite classical system in a nonequilibrium steady state [69], where steady state means that

the properties of the system are independent of time.
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theorem is a valid formulation for the third law in the quantum regime, which is also proved

to be valid for quantum oscillators with various types of heat baths [78, 79]. Ref. [79] also

rebuts some early claims of violations in the laws of quantum thermodynamics.

Nevertheless, in a 2013 review of quantum thermodynamics [4], Kosloff advocates that

the laws of thermodynamics are true in any quantum circumstance and that any apparent

violation of them should be viewed with skepticism because, despite the endless attempts,

there is no successfully rebut of them and most of these apparent violations are caused

by flaws in the approximations taken, usually in the derivation of the master equations.

Specifically for the third law, in a 2019 paper [7], Shastry defends the ideas brought by

Kosloff and presents proof of the Nernst heat theorem for generic open quantum systems of

independent fermions, both in and out of equilibrium, with strong coupling to reservoirs.

2.2 Quantum thermal machines

We have already shown in section (1.1) how the thermal machines are constructed from

the classical thermodynamics point of view. Now, how can we properly define a quantum

heat engine (QHE)? A simplistic answer is that a QHE is a machine that converts heat into

useful work using a quantum system as its working substance. The number of possibilities

for models of QHEs has no limits since we can, in principle, use any quantum system as the

working substance, nevertheless, we can broadly classify them as reciprocating or continuous.

Reciprocating engines, or even discrete engines, are the ones where the cycle operation

is composed by a series of strokes where the system is coupled or decoupled from thermal

baths in each stroke [11, 80]. Therefore, a reciprocating engine is defined as the product of

quantum operations that acts on the working substance’s density operator ρ̂:

Ûcyc =
∏
j

Ûj, (2.28)

with Ûcyc being the cycle propagator and Ûj are stroke propagators. Quantum operations are
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defined as completely positive and trace preserving maps on the space of density matrices,

they map positive elements into positive elements without changing the value of the trace of

the density operator. Kraus’ theorem ensures that if Λ is a quantum operation then

Λρ̂ =
∑
j

Ŵ †
j ρ̂Ŵj, (2.29)

where Ŵj are operators (also called Kraus operators) satisfying
∑

j Ŵ
†
j Ŵj = I. Similar

to the thermalization process of a system in contact with a heat reservoir, a reciprocating

engine will, after the required time, settles to a steady state regime called the limit cycle

[81]. The steady state operation is an invariant of the cycle propagator Ûcycρ̂st = ρ̂st and if

Ûcyc have a single non-degenerate invariant state, then we call ρ̂st the limit cycle ρ̂lc instead.

Thus, if ρ̂lc is proved to exist then any arbitrary initial state will approach it if the cycle is

repeatedly applied.

In contrast, continuous engines are the ones where the system is coupled to the thermal

baths during the whole cycle of operation of the engine, this way attaining a steady-state

operation [82]. Unlike the reciprocating engines, continuous engines do not present a limit

cycle where the state of the quantum system is the same at the end of each cycle, they operate

in a constant steady state regime ρ̂st, where the properties of the system are independent of

time.

There are two different classifications for the continuous engines, they can be autonomous

or driven. Continuous autonomous engines [83, 84] operate without any external time-

dependent driving, but they are coupled with three or more thermal baths simultaneously.

The tricycle model [85] is the template for almost all continuous engines, which consists of

three thermal baths: a hot bath with temperature Th, a cold bath with temperature Tc, and

a work bath with temperature Tw. The device operates as an engine by either heating the

hottest bath or cooling the coldest bath, and it can also be viewed as a heat transistor [86].

On the other hand, a continuous driven engine operates with an external intervention, i.e.,

the device is connected to an external power source to reach steady state and regulate its
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operation [87].

2.2.1 Unitary dynamics of quantum thermodynamic cycles

In order to construct a quantum Carnot engine (QCE) or a quantum Otto engine (QOE),

first, we need to define what is the corresponding quantum versions of the thermodynamic

processes.

Quantum thermodynamic processes in an unitary dynamics

Assuming a quasistatic unitary dynamics and recalling the I-law in the classical work

approach (equations 2.7 and 2.8), we may start with the corresponding quantum version

of the isothermal process. We know that the main feature of this process is to keep the

temperature of the working substance constant so that the system is all the time in thermal

equilibrium with the heat bath. At first sight, we do not have a clear universal assignment

of temperature for a quantum system, but if this quantum system is in thermal equilibrium

with a heat bath, then we may induce the temperature of the system as the same as the

temperature of the heat reservoir (otherwise there would be a heat flux between the system

and the reservoir and, consequently, there would be no thermal equilibrium). Therefore, in a

quantum isothermal process work can be done and, at the same time, heat can be absorbed,

in such a way that both the eigenenergies En and the occupation probabilities Pn changes

simultaneously and the thermodynamic equilibrium condition is achieved at every instant.

This leads the density operator to assume thermally distributed populations in the quantum

states |n〉:

ρ̂(t) = (1/Z)
∑
n

exp[−En(t)/(kBT )] |n(t)〉 〈n(t)| (2.30)

with kB being the Boltzmann constant and Z =
∑

n exp[−En(t)/(kBT )] the canonical parti-

tion function. Also, Ref. [11] uses some counterexamples to show that the internal energy of

the system changes during the quantum isothermal processes, unlike its classical counterpart
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for an ideal gas.

On the other hand, a quantum isochoric process can also be defined taking its classical

counterpart to compare. In a classical isochoric process, there is no variation in the volume

of the system and, consequently, no work is done. To achieve this feature in our quantum

analog, it is enough to assume, evoking equation (2.7), that there is no variation in the

eigenenergies, dEn = 0. Thus, to realize a quantum isochoric process, we need to put our

working substance into contact with a heat bath, this way the system can exchange heat

until the system reaches thermal equilibrium with the heat bath, but, during this process, we

are not allowed to let the eigenenergies change. In general, the Hamiltonian of the working

substance is controlled by an external parameter that changes the energy scale, which makes

this process easier to perform in an experiment.

Following the same reasoning, a quantum adiabatic process is defined as the one with no

heat exchange d̄Q = 0 between the system and the heat bath, and, recalling equation (2.8),

the population distribution of the system must remain unchanged, dPn = 0. It is important

to state that a quantum adiabatic process does not imply in a classical adiabatic process, if

the process proceeds very fast, for example, there is no time for the heat to be exchanged

classically, but internal excitations may occur and the occupation probabilities Pn will not

remain unchanged. This is the reason a quantum adiabatic process needs to proceed very

slow, although there are proposals of different ways to find a "shortcut" to the quantum

adiabatic condition away from the quasistatic regime.

Quantum Carnot cycle

Just like in classical thermodynamics, the quantum Carnot cycle does not have much

practical importance besides being the most efficient idealized machine. It establishes the

upper limit for the efficiency of any thermal machine operating between two heat reservoirs.

The QCE consists of two quantum isothermal processes (A → B and C → D) and two

quantum adiabatic processes (B → C and D → A), and also must be operated reversibly.
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Reversibility in quantum mechanics is associated with unitary evolution, but we are inter-

ested here in thermodynamic reversibility. Therefore no thermalization process is allowed,

otherwise, entropy would increase the entropy of the working substance plus the bath and

this cycle would be irreversible. For any isolated system presenting discrete energy levels,

H.T. Quan [11] proves that this is achievable by changing all the energy gaps by the same

ratio En(B) − Em(B) = λ[En(C) − Em(C)] and En(A) − Em(A) = λ[En(D) − Em(D)]

(n = 0, 1, 2...), with λ = Th/Tc and , Th and Tc being the temperatures of the hot and the

cold reservoirs, respectively.

We are interested in finding the efficiency ηC of the QCE. We could as well use equation

(2.8) to calculate heat transferred during the quantum isothermal processes, but, for sim-

plicity, we use the expression d̄Q = TdS, which is valid because the system is in thermal

equilibrium during the whole process. Thus, the heat absorbed Qh and released Qc can be

calculated as follows:

Qh =

∫ B

A

ThdS = Th[S(B)− S(A)] > 0, (2.31)

Qc =

∫ D

C

TcdS = Tc[S(D)− S(C)] < 0, (2.32)

where the temperature is taken out of the integral because the temperature of the working

substance is constant during the quantum isothermal expansion (A→ B) and the quantum

isothermal compression processes (C → D). The entropy of the working substance at the

end of any of the processes (using the Boltzmann distribution for thermal equilibrium) is

given by the time derivative of the Helmholtz free energy

S(i) = −∂A(i)

∂Ti
= − ∂

∂Ti
[−β−1

i lnZ(i)] = kB lnZ(i) +
kB
Z(i)

∑
n

βiEn(i) exp[−βiEn(i)],

or simply,

S(i) = −kB
∑
n

exp[−βiEn(i)]

Z(i)
[−βiEn(i)− lnZ(i)], (2.33)

where Z(i) and En(i) are, respectively, the partition function and eigenenergies in the cor-

responding instants i = A,B,C,D. Here, βA = βB = 1/kBTh, βC = βD = 1/kBTc. The
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work WC of the QCE can be calculated using equations (2.31) and (2.32), and the first law

of thermodynamics

WC = Qh +Qc = (Th − Tc)[S(B)− S(A)], (2.34)

where we have used the fact that S(A) = S(D) and S(B) = S(C), since (A → D) and

(B → C) are quantum adiabatic processes (no generation of entropy is allowed). Note that,

in order to extract positive work from the bath, it is sufficient to have Th > Tc, which is the

positive-work condition. Finally, the efficiency of the QCE is given by

ηC =
WC

Qh

= 1− Tc
Th
, (2.35)

which is the same as the classical Carnot engine. Using the reversibility condition En(B)−

Em(B) = (Th/Tc)[En(C)− Em(C)], we can write the efficiency in terms of the energy gaps:

ηC = 1− En(C)− Em(C)

En(B)− Em(B)
. (2.36)

Quantum Otto cycle

The Otto engine is one of the most widely used engines in operation nowadays, mostly

present in automobiles. Its quantum version, the QOE, is maybe the most explored cycle in

the later years, it consists of two quantum isochoric (A→ B and C → D) and two quantum

adiabatic processes (B → C and D → A). The heat absorbed, Qh, and released, Qc, by the

working substance during the quantum isochorical processes is given by

Qh =
∑
n

∫ B

A

EndPn =
∑
n

Eh
n[Pn(B)− Pn(A)], (2.37)

Qc =
∑
n

∫ D

C

EndPn =
∑
n

Ec
n[Pn(D)− Pn(C)], (2.38)

where the eigenenergy is taken out of the integral since the eigenenergy of the working

substance is constant during the quantum isochoric heating (En = Eh
n in A → B) and the

quantum isochoric cooling (En = Ec
n in C → D). The workWO of the QOE can be calculated
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using the previous equations and the first law of thermodynamics

WO = Qh +Qc =
∑
n

(Eh
n − Ec

n)[Pn(B)− Pn(A)], (2.39)

where we have used the fact that Pn(B) = Pn(C) and Pn(A) = Pn(D) since (B → C) and

(A→ D) are quantum adiabatic processes. The efficiency of the Otto cycle can be calculated

as follows

ηO =
WO

Qh

=

∑
n(Eh

n − Ec
n)[Pn(B)− Pn(A)]∑

nE
h
n[Pn(B)− Pn(A)]

= 1−
∑

nE
c
n[Pn(B)− Pn(A)]∑

nE
h
n[Pn(B)− Pn(A)]

. (2.40)

2.2.2 Finite-time thermal machines

Real engines operate far from equilibrium conditions and in a finite time. Their per-

formance is restricted by the rate of heat transport, friction and heat leaks. A dynamical

viewpoint is therefore the next required step.

In this subsection, we focus on the dynamic version of the QOE, a reciprocating engine.

As we stated before, the QOE is composed of four strokes: two adiabats, where the working

medium is isolated from the environment and an external parameter ω that controls the

energy scale of the working medium varies, and two isochores, where the working medium is

in contact with a heat bath and the external control remains constant. In the adiabats no

heat is exchanged and only work can be consumed or produced. In the isochores only heat

is allowed to be exchanged between the working medium and the environment. The cycle is

then described as the following:

(i) The compression adiabat : the external parameter increases from ωc to ωh > ωc in a

time period τch while the working medium is isolated from the environment. The stroke

is described by the propagator Ûch.

(ii) The hot isochore: the external parameter ωh remains constant while the working

medium is coupled with a heat bath at temperature Th during a time period τh ex-

changing heat. The stroke is described by the propagator Ûh.
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(iii) The expansion adiabat : the external parameter decreases from ωh to ωc in a time

period τhc while the working medium is isolated from the environment. The stroke is

described by the propagator Ûhc.

(iv) The cold isochore: the external parameter ωc remains constant while the working

medium is coupled with a heat bath at temperature Tc during a time period τc ex-

changing heat. The stroke is described by the propagator Ûc.

The cycle propagator is then described as the product of individual propagators (see equation

2.28)

Ûcyc = ÛcÛhcÛhÛch. (2.41)

The refrigerator cycle can easily be obtained by simply reversing the sequence of the propa-

gators in equation (2.41), i.e.,

Û refcyc = ÛchÛhÛhcÛc. (2.42)

To obtain a finite time allocated in the adiabats, the unitary strokes Ûch and Ûhc must

deviate from the adiabatic limit. This means that the rapid change in the energy scale

of the working medium does not allow its state to follow adiabatically the instantaneous

energy levels, coherence is then generated. But generating coherence requires a cost of

additional external work, as a result, both coherences and additional energy become stored

in the working medium. This additional energy will dissipate into the cold bath and the

appearance of decoherence is inevitable, both phenomena are “nonadiabatic” effects, which

are the quantum analog of friction that has been termed quantum friction [88, 89]. Although

it seems contradictory to have “nonadiabatic” effects in the adiabats, here “nonadiabatic” is

referred as in the quantum sense (recalling the quantum adiabatic theorem [90]) and adiabat

as in the thermodynamic sense. There are two main strategies to shorten the time in the

adiabats. One strategy is to find a frictionless protocol where the price of generating coherence

is reduced, these protocols are termed shortcuts to adiabaticity [91–93]. The other strategy

is to maintain the coherence during the cycle by shortening the cycle time [94].
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For the engine to obtain a finite power output, the time in the isochores must also be

shortened, i.e., the thermalization strokes Ûc and Ûc should be restricted. This is done by

avoiding the infinite time full thermalization. It is shown that optimizing the power output

at high temperature leads to [95]:

ηca = 1−
√
Tc
Th
, (2.43)

which is the Curzon-Ahlborn efficiency. The original paper by Curzon and Ahlborn [29]

obtained equation (2.43) for classical thermodynamics in the endoreversibility context and

started the field of finite time thermodynamics, as we previously elucidated in the first

chapter.

The Hamiltonian that describes our engine is constituted by three components

Ĥ(ω) = Ĥ0 + Ĥext(ω) + Ĥint, (2.44)

where Ĥ0 is the free Hamiltonian, Ĥext(ω) is the external control Hamiltonian that brings

the influence of the external time-dependent control field ω and Ĥint is the Hamiltonian that

represents the internal interaction. The working medium consists of an ensemble of quantum

systems and, together with the above Hamiltonian, is described by the density operator ρ̂.

In order to fully describe the QOE in this regime, we must establish the dynamic equations

for the adiabats and the isochores.

Dynamics on the Adiabats

In the adiabats the working medium is isolated from the environment, thus the evolution

of the density operator is given by the von Neumann equation:

dρ̂

dt
= −i[Ĥ(ω), ρ̂]. (2.45)
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The energy of the system is given by the average 〈E〉 = Tr{Ĥ(ω)ρ̂} and its variation in time

is

d

dt
〈E〉a = Tr

{(
d

dt
Ĥ(ω)

)
ρ̂

}
+ Tr

{
Ĥ(ω)

dρ̂

dt

}
= Tr

{(
d

dt
Ĥ(ω)

)
ρ̂

}
+ Tr

{
Ĥ(ω)

(
− i[Ĥ(ω), ρ̂]

)}
,

where we have used the equation (2.45) and the linearity of the trace. Thus, using the cyclic

property of the trace, the second term in the RHS of the previous equation vanishes and we

get
d

dt
〈E〉a = Tr

{(
d

dt
Ĥ(ω)

)
ρ̂

}
. (2.46)

This is the change of the energy on the adiabats due to the explicit time dependence of ω.

Since no heat is exchanged during the adiabats, the total change in the energy of the system

must the work and, for a time period t, the total work done is obtained by simply integrating

the rate of change of the energy

W (t) =

∫ t

0

d

dt′
〈E〉adt′ = 〈E(t)〉a − 〈E(0)〉a. (2.47)

The propagators Ûch and Ûhc can be obtained from the density operator evolution (equation

2.45).

Dynamics on the Isochores

In the isochores the working medium is put in contact with a heat bath at temperature Tj

while the external control field is kept constant ωj, with j = c, h. If the working medium is

weakly coupled to the bath, the thermalization process is described by the Lindblad master

equation (cf. equation 2.1),
dρ̂

dt
= −i[Ĥ(ωj), ρ̂] + Lj(ρ̂), (2.48)

where

Lj(ρ̂) =
∑
k

γk

(
L̂kρ̂L̂

†
k −

1

2
{L̂†kL̂k, ρ̂}

)
. (2.49)
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The Lindblad operators L̂k are transition operators between neighboring energy levels of the

Hamiltonian Ĥ and γk are the corresponding transition rates. The energy change in the

system is given by

d

dt
〈E〉i = Tr

{(
d

dt
Ĥ(ωj)

)
ρ̂

}
+ Tr

{
Ĥ(ωj)

dρ̂

dt

}
= Tr

{
Ĥ(ωj)

(
− i[Ĥ(ωj), ρ̂]

)}
+ Tr

{
Ĥ(ωj)Lj(ρ̂)

}
,

where we have used the fact that on the isochores the Hamiltonian is independent of time.

Using the cyclic property of the trace to eliminate the first term in the RHS of the previous

equation, the energy change reduces to

d

dt
〈E〉i = Tr

{
Ĥ(ωj)Lj(ρ̂)

}
. (2.50)

This is the change of the energy on the isochores due to the dissipation term Lj(ρ̂). Since

this dissipation on the isochores must be exchanging heat, the total heat exchanged for a

time period t is

Qj(t) =

∫ t

0

d

dt′
〈E〉adt′ = 〈E(t)〉i − 〈E(0)〉i. (2.51)

The propagators Ûc and Ûh can be obtained from the density operator evolution (equation

2.48).

Quantum Lubrication

We did not mention before, when obtaining equations (2.46) and (2.50), but, a priori,

quantum friction is present and energy is being lost. Therefore, following the ideas behind

the quantum lubrication [15], we can add an external noise to the engine in order to suppress

these frictional losses. This external noise is the pure dephasing, which is considered by

adding into equations (2.45) and (2.48) the following term

LD(ρ̂) = −Λ[Ĥ(ω), [Ĥ(ω), ρ̂]]. (2.52)

Note that the addition of this term does not change the results of energy change on the adia-

bats (equation 2.46) and isochores (equation 2.50), since the trace Tr{Ĥ(ω)LD(ρ̂)} vanishes.
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Surpassing the Carnot efficiency bound

Some authors claim a supposed violation of the thermodynamic Carnot bound for the

efficiency of a machine [96–98], but, in the same way as Kosloff criticizes the supposed viola-

tions of the laws of thermodynamics, these claims must be faced with skepticism. In general,

these claims are associated with hybrid engines [99, 100], where the working medium is cou-

pled with non-thermal baths and work can be delivered without any heat input. Due to these

non-thermal baths, the efficiency bound does not solely follow the laws of thermodynamics.

Therefore, it is reasonable to say that these hybrid engines cannot be compared to usual

thermal machines, where the Carnot bound is established as a consequence of the second

law. Despite all this, they do not violate any principle of thermodynamics [14, 101].
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Chapter Three

Quantum dots

In this chapter, we give a brief introduction about the study of the quantum dots and its

electronic transport properties to apply them in a new physical model for a quantum thermal

machine in the next chapter. We start by defining the semiconductors heterostructures

and then discuss the experimental implementation for confining electrons in quantum wells,

quantum wires and, finally, quantum dots. We end the chapter with a description of artificial

molecules, which are the double quantum dots.

3.1 Semiconductors heterostructures

Solids are an arrangement of atoms connected by chemical bonds and they can be broadly

classified as crystals or amorphous solids. The crystals are characterized by a periodic

regular structure for the distribution of atoms and molecules, and the amorphous solids

are characterized by the lack of a definite lattice pattern, they have no periodicity and no

definite form. The composition and arrangement of these structures determine the properties

of the solids, such as density, malleability, hardness, optical transmission, conductivity, etc.

Focusing on the conductivity property, we can classify the solids as metals (or conductors),

semiconductors, or insulators.

In the metals, the conduction band and the valence band1 overlap and electrons can
1The electronic population of a solid is distributed in energy bands, the conduction, and valence band,
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Figure 3.1 Energy bands for metals, semiconductors and insulators. The Fermi
level is the name given to the highest energy occupied electron orbital at absolute
zero temperature.

readily jump between the two bands, as we can see in figure 3.1. The insulators are charac-

terized by a large bandgap, which means that the electrons have a large resistance in being

excited to the conduction band. Nevertheless, our greater interest in this chapter is in the

semiconductors, although the distinction between semiconductors and insulators is a mat-

ter of convention, a semiconductor is characterized by an intermediate-sized but non-zero

band gap. Semiconductors can be pure elements, such as silicon (Si) or germanium (Ge), or

compounds such as gallium arsenide (GaAs) or cadmium selenide (CdSe).

First proposed in 1970 by L. Esaki and R. Tsu [102], the fabrication of hybrid structures

composed of thin layers of different interleaved semiconductors was only realized experimen-

tally in 1974 with the works of L. Esaki, L. L. Chang, R. Dingle and co-workers [103–105].

These hybrid structures are termed as semiconductors heterostructures. The intercalation of

layers of different semiconductors with nanometric thickness generates the quantization for

separated by a forbidden region where the electrons cannot occupy. This forbidden region is the energy gap,

or simply the bandgap. For an electron to jump from the valence band into the conduction band, it must

be thermally excited with an energy of, at least, the energy gap.
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Figure 3.2 The band structure diagram in a quantum well of GaAs in between
AlGaAs. The AlGaAs is used because it has very nearly the same lattice constant
as GaAs, but a larger bandgap.

the movement of electrons in the structure. As an example consider the quantum wells, they

can be made with heterostructures as the following: a layer of a semiconductor is placed

between two layers of a different semiconductor with a higher energy gap, this way an elec-

tron in the conduction band or a hole in the valence band can be confined in the potential

well created in the structure (see figure 3.2). Therefore, the quantization appears as a direct

consequence of the confinement.

The confinement in a single direction generates the quantum wells, but further directions

can also be restricted. Quantum wires appears with the confinement of electrons in two

directions, which makes them quasi-one-dimensional systems (their width ω must be com-

parable to the Fermi wavelength). The electronic transport in these quantum wires can be

classified in two different regimes: diffusive regime and ballistic regime. Being L the length

of the wire and le the elastic mean free path, we have the following description of the regimes:

• Diffusive regime (L � le): The length of the wire is long enough for the electrons to

suffer many elastic scattering during their trip along the wire (figure 3.3(a)).

• Ballistic regime (L < le): The length of the wire is short enough for the electrons to
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Figure 3.3 (a) Illustration of a diffusive wire, where the elastic mean free path le
is much shorter than the length L of the wire, what causes many scattering events.
(b) Illustration of a ballistic wire, where le < L and the only scattering occurs in
the confining walls. (c) Illustration of a quantum point contact (QPC), which is a
ballistic wire with ω ≈ L� le. Figure adapted from Ref. [106].

move freely, without any elastic scattering, along the wire, except for the boundary

scattering at the walls (figure 3.3(b)).

For ballistic wires, if their length are short enough to form a point-like contact between

the left and right reservoirs (ω ≈ L � le), we call them quantum point contacts (QPCs),

see figure 3.3(c). The QPC is the simplest mesoscopic system there is and classically we

could expect for it an infinite conductance since there is no scattering, but surprisingly, in

the low temperature regime, it has a quantized resistance for the electronic transport, i.e.

its conductance G is quantized in units of G0 = 2e2/h [106, 107].

Going further, we may confine the electrons in all of the three directions, we observe then

the formation of a conducting island where electrons are trapped in a very small region of a

size comparable to the Fermi wavelength; we call it a quantum dot [18].
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Figure 3.4 (a) Illustration of a quantum dot in the two-dimensional interface be-
tween gallium arsenide (GaAs) and aluminium gallium arsenide (AlxGa1−xAs, with
x ≈ 7%). (b) Electron microscopy of the quantum dot illustrated in (a). Both
figures were adapted from Ref. [108].

3.2 Quantum dots

A quantum dot is a semiconductor particle and it is sometimes called an artificial atom

because of its similarities with a real one. The differences between them are essentially their

size (0.1nm for atoms against ≈ 100nm for quantum dots), and the shape and strength of

the confining potential. Exactly as real atoms, the quantum dots admit a discrete energy

spectrum and can only retain a finite number of electrons. In order to change the number

of electrons in an atom, we can ionize it, however, in quantum dots, the number of electrons

can also be adjusted by simply tuning the confinement potential. This way we can scan

through the entire periodic table by simply changing a voltage.

A lateral quantum dot is made by trapping electrons at the interface between semicon-

ductors heterostructures, forming this way a two-dimensional electron gas (2DEG) in this

interface. The confinement in the other two directions is generated by voltages in electrodes

formed at the interface layer. Figure 3.4 illustrates a quantum dot for a GaAs/AlGaAs het-

erostructure with gold electrodes (in yellow), the gate pairs T-L and T-R form two quantum

point contacts (QPCs) that can be tuned in the tunneling regime (the conductance of both
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QPCs is reduced below 2e2/h) and a closed quantum dot is formed. Electrons coming from

a source can pass in and out of the dot through the two tunneling barriers (red arrows on

figure 3.4(b)) and then reaches a drain (both source and drain are illustrated as red rectan-

gular boxes), but a depletion region around the gates prevents them from passing through

the other gaps.

For electrons from the source to enter the quantum dot, they must face a potential barrier

and can only surpass it through the quantum tunneling effect. However, the discrete unit

of charge on an electron generates a genuinely classic effect, mainly caused by Coulomb

repulsion. If we have relatively high potential barriers separating the dot from the source

and drain, the tunneling to the dot is weak and the number of electrons on the dot is fixed.

Therefore, to add an extra electron into the dot, extra energy is required to compensate the

Coulomb repulsion and no current will flow until this energy is provided by increasing the

voltage. This phenomenon is known as Coulomb blockade [109, 110].

3.3 Double quantum dots

After studying the composition of a single quantum dot and the electron transport

through it, the next logical step is to consider systems with two or more dots. Systems

with two quantum dots are known as double quantum dots (DQDs) and, since a quantum

dot is regarded as an artificial atom, sometimes the DQDs are called artificial molecules. Co-

herent manipulation of a single surplus electron in a DQD was reported in a series of papers

by Hayashi and collaborators [23, 111]. The study of the DQD is particularly interesting,

as it can be regarded as a qubit taking either the degree of freedom of spin or charge of the

electrons in the quantum dots, which brings obvious applications in quantum information

technology [112].

Consider the following setup used by Fujisawa et al. in Ref. [23]. The DQD was fabricated

in a GaAs/AlGaAs heterostructure with a 2DEG (figure 3.5 illustrates a scanning electron
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Figure 3.5 Scanning electronic transport image of the sample used by Fujisawa et
al [23].
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Figure 3.6 Representation of the energy diagram for the DQD in: (a) the transport
regime and (b) the Coulomb blockade regime. The black ball represents the excess
electron in the quantum dot.

micrograph of the DQD). The left and right dot are coupled through an interdot tunneling

barrier with negative gate voltage VC . Metal electrodes also form tunneling barriers between

the source (S) and the left dot (L), and between the drain (D) and the right dot (R), both

with negative gate voltages VL and VR, respectively. The gates with voltages Vl and Vr can

also be adjusted to control the confinement potential in each quantum dot and, in general,

are not the same (Vl 6= Vr). The main control feature is the voltage difference between the

source and the drain, VSD, in which the qubit state can be initialized, manipulated, and

measured.
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Figure 3.7 Dessintony between electronic levels of the dots, where µL and µR are
the chemical potentials of the left and right dots, respectively.

Let ΓL and ΓR be the tunneling rate through the left and right barrier, respectively. An

excess electron occupying the left dot (right dot) characterizes the state |L〉 (|R〉), |0〉 is

the empty state and |2〉 is the doubly occupied state. There are two different regimes of

operation for the DQD, the transport regime and the Coulomb blockade regime (see figure

3.6). The transport regime is characterized by a large source-drain voltage VSD � 0, in

which the continuous flow of electrons through the quantum dots implies the qubit state to

be in a statistical mixture of |L〉, |R〉, |0〉 and |2〉. On the other hand, the Coulomb blockade

regime is characterized by a null source-drain voltage VSD = 0. In this regime, there is

no enough energy for the electrons to surpass the Coulomb repulsion and thus there is no

current flow through the DQD. During this regime, we have an artificial two-level system

that defines the charge qubit, this way the qubit state can be either in |L〉 or |R〉, i.e. the

excess electron is tunneling all the time from the left to the right dot and vice-versa so that

we never know where the electron is. In both regimes, the system is initially prepared in the

localized state |L〉 by choosing ΓL, ΓR � Γc, with Γc being the tunneling coupling between

the left and right dots.

In the Coulomb blockade regime, the effective Hamiltonian of the system can be described
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Figure 3.8 Equivalent single-electron circuit diagram for the DQD. The tunneling
barriers are characterized by a tunnel resistor and a capacitor, as indicated in the
figure. This figure was adapted from Ref. [113].

as

Ĥ =
ε(t)

2
σ̂z +

∆

2
σ̂x, (3.1)

where σi (i = x, y, z) are the Pauli matrices. The parameter ε = µR − µL is the chemical

potential difference of the left and right dot, which describes a possible emergence of current

between the dots depending on the sign of ε(t). The parameter ∆ describes the strength of

the tunneling coupling between the pair of quantum dots2. Therefore the two terms in the

Hamiltonian reflect the electron oscillation in both dots by taking into account the chemical

potential difference (which, in general, generates an electric current) and the quantum tun-

neling effect. An equivalent circuit diagram for the DQD is illustrated in figure 3.8, where

the dots L and R are connected to each other by a tunneling barrier (with coupling energy

∆) and to the electrodes by tunneling barriers (with tunneling rates ΓL and ΓR). Each dot

is also capacitively coupled to a gate voltage VL (VR) through a capacitor CL (CR).

2In case you are wondering why we defined the parameter ∆ since we have already previously defined the

parameter Γc, the reason is simply that we need to redefine a new parameter that counts for the tunneling

coupling exactly as Γc, but with dimension of energy to put the Hamiltonian in terms of it.
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Chapter Four

Coupled double quantum dots heat

machines

In this chapter, we provide a model for a quantum heat engine using two coupled double

quantum dots (DQDs), each DQD with an excess electron to interact, as the working medium.

We describe the physical model and how the quantum Otto cycle can be implemented. We

also analyze the arising of different regimes of operations of our thermal machine and we show

how the effects due to the quantum tunneling of a single electron between each individual

DQD affects the operation modes of the engine. This model was a proposal of the research

group and brings original results that are organized in an article accepted for publication in

the journal Physical Review E.

4.1 The model

We proposed the following quantum system as a working medium for a quantum heat

engine. Consider a two-qubit device constituted by a pair of coupled double quantum dots

(DQDs) fabricated in a standard AlGaAs/GaAs heterostructure with two-dimensional elec-

tron gas (2DEG). The qubit takes the charge degree of freedom of an excess electron in each

DQD, where the coupling emerges from the Coulomb interaction.
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Figure 4.1 The left picture shows a schematic representation of the physical model with
two coupled DQDs. The purple spheres represent the quantum dots, the electrons are
represented by the smaller red spheres inside the quantum dots and ∆1,2 stands for the
tunneling coupling of the DQD1,2. The right picture is the equivalent circuit diagram of
the device. Tunnel couplings are represented by two bars as in ∆1 and ∆2, S1,2 and D1,2

are, respectively, the source and drain of the DQD1,2, and the capacitors CLL, CRR, CLR
and CRL connect the DQDs.

The device consists of a series of tunneling barriers between the dots (characterized by the

coupling energies ∆1 and ∆2) as well as capacitively coupled to gate voltages. The electron

configurations in both DQDs are controlled by tuning the voltages applied on the gates (see

Figure 4.1). On the other hand, the two double quantum dots are capacitively coupled, this

capacitance model describing the Coulomb interactions between the two DQDs [25, 27, 114].

This capacitance coupling is controlled by the capacitors CLL, CRR, CLR and CRL, where

no transition for the electron to leave the DQD1 into DQD2 is allowed, and vice-versa. The

tunnel junctions placed after the source S1,2 and before the drain D1,2 are adjusted in such

a way to make the system in the Coulomb blockade regime, enabling a single electron to be

confined in each DQD. The charge of the excess electron in each DQD build up the qubits,

which are described by the two possible states for the location of each electron, the left dot

(|L〉) and the right dot (|R〉), where the electron can tunnel from left to right and from right

to left. The Hamiltonian of such a system is given by

Ĥ = ∆1σ̂
x
1 + ∆2σ̂

x
2 + V (σ̂z1 ⊗ σ̂z2), (4.1)

where ∆1 and ∆2 are the strength of the tunneling coupling between each pair of quantum
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dots, V is the interaction Coulomb coupling between the excess electrons and σx,y,z1(2) are the

Pauli matrices. The tunneling coupling parameters ∆1 and ∆2 are controlled by the gate

voltages and the electrostatic coupling V between the double quantum dots is controlled by

the gates voltage sources S1 (S2) through the capacitors connecting both DQDs. A more

general version of the Hamiltonian of this system takes into account an extra term for the

energy differences between the uncoupled charged states |L〉 and |R〉 (exactly as in equation

3.1), but there is no analytical solution for this general case. This way, we consider the

simplest case where all of our quantum dots have the same energy available for the electron

to occupy and we can get analytical solutions.

Solving the eigenvalue equations for the Hamiltonian (4.1), we obtain the following eigen-

states (see Ref. [115])

|ψ1〉 = α−[A−(− |LL〉+ |RR〉) + n−(|LR〉 − |RL〉)], (4.2)

|ψ2〉 = α−[n−(− |LL〉+ |RR〉) + A−(− |LR〉+ |RL〉)], (4.3)

|ψ3〉 = α+[A+(|LL〉+ |RR〉) + n+(|LR〉+ |RL〉)], (4.4)

|ψ4〉 = α+[n+(|LL〉+ |RR〉)− A+(|LR〉+ |RL〉)], (4.5)

where α± = 1√
2
√

(n±)2+A2
±
, A± = V +

√
(n±)2 + V 2 and n± = ∆1 ± ∆2, with the following

eigenenergies

E1 = −
√

(n−)2 + V 2, (4.6)

E2 = −
√

(n+)2 + V 2, (4.7)

E3 =
√

(n−)2 + V 2, (4.8)

E4 =
√

(n+)2 + V 2. (4.9)

An important result that we will later need is how the eigenenergies change as either the

Coulomb coupling or one of the tunneling parameters increases (it does not matter which

of them we take since the Hamiltonian is symmetric as we change ∆1 ↔ ∆2). From the
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figure 4.2 we see that the energy levels are compressed pairwise and, at the same time, the

ground and the first excited state are separated from the second and third excited state as

the interaction coupling is raised. On the other hand, the energy levels are pairwise detached.

As we increase the tunneling parameter, they are shifted apart from each other more rapidly

than the energy levels separation observed inside each pair separately. Thus the energy scale

variation is not uniform.

4

( )μeV

( )μeV

4

( )μeV

( )μeV

Figure 4.2 In a), it is depicted the energy levels in terms of the interaction coupling
V between the two DQDs for the same fixed tunneling parameters ∆1 = 10µeV and
∆2 = 3µeV . In b), we have the plot of the energy levels against the tunneling parameter
∆1 for fixed ∆2 = 3µeV and V = 10µeV. Notice that there is a squeezing of the energy
gaps as we either increase the interaction coupling or decrease the tunneling parameter.

Despite the values of the tunneling parameters, ∆1 and ∆2, are mostly predetermined in

the fabrication of the device, we still can modify them considerably experimentally [25].

Here we refer to the system as in a Gibbs state when it is in thermal equilibrium with a

heat bath, which means that its density matrix is given by ρ(T ) = exp(−βH)
Z

, where Z is the

partition function, β = 1
kT

, k is the Boltzmann constant and T is the temperature of the heat

bath. In the figure 4.3 we see the occupation probabilities distribution pn = exp(−En/kT )/Z

for the four possible states |ψn〉n=1..4 in terms of the temperature. We see that for T = 1µeV

or even T = 2µeV (we normalize the Boltzmann constant k = 1 in this whole chapter), the
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second and the third excited states has practically zero probability (p3 ≈ p4 ≈ 0) for the

system to be found in, this way we can neglect this two most excited states and approximate

our system by a two-level one in this regime. On the other hand, if we have, e.g., T = 10µeV

or T = 20µeV, we see that p3 and p4 are no longer negligible, thus the two-level approximation

is no longer valid in this regime.

( )μeV

Figure 4.3 The occupation probabilities pn against the temperature T for fixed values:
V = 10µeV, ∆1 = 10µeV and ∆2 = 3µeV.

4.2 Quantum Otto cycle

Established the physical implementations of our working medium, we now need to de-

scribe the operation of the machine. We assume a quasistatic unitary dynamics (described

in chapter two, more specifically in the subsection 2.2.1), and we take the case of a quantum

Otto engine, which is described by four strokes: two quantum isochoric processes and two

quantum adiabatic processes (see figure 4.4).

The cycle starts with a quantum isochoric process (A→ B): the working medium, with

interaction coupling Vh and tunneling parameters ∆h
1 and ∆h

2 , is put in contact with the hot

reservoir at temperature Th until they reach a thermal equilibrium and a total heat Qh > 0
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Figure 4.4 A schematic representation of an Otto engine using a pair of coupled DQDs as
a working medium: the incoming heat from the hot bath, Qh, is transformed into extracted
work. The engine cycle consists of two adiabatic strokes (B → C and D → A) where it is
decoupled from the thermal baths, and two isochoric strokes (A→ B and C → D) where
the engine is coupled to two thermal baths at temperatures Th and Tc, with Th > Tc.

is transferred to the system at the end of the process. The parameters V , ∆1 and ∆2 that

regulate the eigenenergies are controlled externally, what makes this process easier to realize

in an experiment. At the end of the process we will have, for the energy eigenstate basis

{|ψn〉}, the following density matrix

ρh = exp(−Hh/kTh)/Zh =
∑
n

phn |ψn〉 〈ψn| , (4.10)

with

Hh =
∑
n

Eh
n |ψn〉 〈ψn| , (4.11)

phn = exp(−Eh
n/kTh)/Zh, (4.12)

Zh =
∑
n

exp(−Eh
n/kTh), (4.13)

where Zh is the partition function, phn is the occupation probabilities of each eigenstate and

Hh is the Hamiltonian when the system is in contact with the hot heat bath.
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Next, we have a quantum adiabatic expansion (B→ C). In this process no heat is

exchanged between the system and the environment. The working medium is isolated from

the environment and therefore, the equation (4.12) is no longer valid during the process

because there is no thermal equilibrium with it. Thus we can increase the interaction coupling

from Vh to Vc > Vh by adjusting the charge state through the gates voltage sources S1 (S2) in

the capacitors mentioned in figure 4.1 and still keep the occupation probabilities phn constant

until the end of the process. Moreover, in parallel to this, the tunneling parameters may be

tuned from ∆h
1(∆h

2) to ∆c
1(∆c

2) by controlling the gate voltages in each DQD. Thereby the

energies increases from Eh
n to Ec

n, so the Hamiltonian will be given by Hc =
∑

nE
c
n |ψn〉 〈ψn|

and some work WBC > 0 is extracted from the system.

In the next stroke we have another quantum isochoric process (C→ D). We put the

working medium in contact with the cold reservoir at temperature Tc, waiting enough time

for the thermalization to occur. A total heat Qc < 0 is transferred to the cold reservoir

at the end of the process and, since heat is exchanged, the occupation probabilities change

from phn = exp(−Eh
n/kTh)/Zh to pcn = exp(−Ec

n/kTc)/Zc, with Zc =
∑

n exp(−Ec
n/kTc). The

density matrix will be given by ρc = exp(−Hc/kTc)/Zc =
∑

n p
c
n |ψn〉 〈ψn| and we keep the

energies Ec
n fixed.

Finally, we close the cycle with a quantum adiabatic compression (D→ A). At this point,

we adjust the voltages in the capacitors again, causing the interaction coupling to change

from Vc to Vh. Apart from that, the tunneling parameters may be tuned from ∆c
1(∆c

2) to

∆h
1(∆h

2) and, consequently, the energies from Ec
n to Eh

n. The Hamiltonian of the system in

the end of the process is then Hh =
∑

nE
h
n |ψn〉 〈ψn|, the occupation probabilities pcn are

kept unchanged and some work WDA < 0 is done on the working medium.

The quantum version of the first law of thermodynamics for an unitary dynamics allows

us to calculate the total heat exchanged during the isochoric processes (see equations 2.37
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and 2.38), that is,

Qh =
∑
n

Eh
n(phn − pcn), (4.14)

and

Qc =
∑
n

Ec
n(pcn − phn), (4.15)

where Q > 0 (Q < 0) means that heat is absorbed (released) from (to) the heat reservoirs,

respectively. Therefore, the total work W produced by the heat engine in the adiabatics is,

by energy conservation, the excess heat

W = Qh +Qc =
∑
n

(Eh
n − Ec

n)(phn − pcn). (4.16)

With that in hands, we can finally have the efficiency of our heat engine, which is calculated

by η ≡ W/Qh.

The description of the refrigerator cycle is analogous to the processes of the heat engine

discussed early, except for the direction of operation of the cycle, which is reversed. This

means that we will have a heat released Qc > 0 from the cold heat bath and absorbed

Qh < 0 by the hot heat bath to the working medium and, consequently, it will be necessary

an external work W = Qh +Qc < 0 for the cycle to operate. The coefficient of performance

(COP) ε measures the efficiency of the refrigerator, which is defined as the modulus of the

ratio of heat released from the cold heat bath and the total work done in the cycle, that is,

ε ≡ Qc/W .

With those definitions in hand, in the next section, we investigate in detail the work

done, the efficiency η, and the COP ε of our machine.

4.3 Work and efficiency

To plot the next graphics, we restrict ourselves to the case where the tunneling parameters

∆1 and ∆2 are the same for the whole cycle and we will no longer worry about the upper

index. This way we define a compression ratio r as the ratio between the maximum and
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the minimum interaction coupling values in the cycle, r = Vc/Vh. As we have previously

discussed, the Coulomb interaction is modified by the controlling voltages in the capacitors.

Since a quantum dot is typically regarded as a 0-D system, for which the actual spatial

dependence is not considered, the parameter r cannot be seen due to the changing of the

volume of the system. The energy level spacing of the system is the quantity that is being

either compressed or stretched.

4.3.1 Estimating the parameter values

μeV( )

Figure 4.5 The work done against the tunneling parameter ∆2 for different values of Vc
and fixed values: Vh = 10µeV and ∆1 = 10µeV. We have Vc = 5µeV (magenta curve),
Vc = 15µeV (green curve), Vc = 20µeV (blue curve) and Vc = 25µeV (red curve). The case
Vc = 10µeV is not plotted, but it corresponds to a null work.

Let us settle the heat bath temperatures as Th = 2µeV and Tc = 1µeV (we normalize

the Boltzmann constant k = 1 during this whole chapter) with the purpose of approaching

our system by a two-level one with eigenenergies E1 and E2. Fixing also Vh = 10µeV

and ∆1 = 10µeV (which are common experimental values in DQDs [25–27]), the figure 4.5

shows us the work done W against the tunneling parameter ∆2 for some different values

of the Coulomb coupling Vc. Thus we can see that the peak of the curve does not shift
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considerable, so we can approximately estimate the best value for ∆2
1, at least by order of

magnitude, that optimize the work done, to know ∆2 ≈ 3µeV.

4.3.2 Engine operation modes

Now that we established the values for the parameters, we can finally obtain the plot for

the work done and the efficiency of the heat engine. In the figure 4.6 the heat exchanged

Qh (Qc) with the hot (cold) reservoir, the work done W , the efficiency η and the Carnot

efficiency ηc are given in terms of the compression ratio r. It is clear from the figure 4.6

that we need r > 1 (Vc > Vh) to achieve positive work, which is reasonable because in this

regime the energy gaps are squeezed (see figure 4.2) when the system is in contact with the

cold reservoir and they are expanded when the system is in contact with the hot reservoir

[5]. Note that we can not increase the compression ratio r indefinitely since the positive

work condition is lost. As we increase the value of r, it comes to a point where there is

no heat transfer even when the system is in contact with the hot and the cold reservoir.

Furthermore, after this point, the signs of the heat exchanged are inverted and the system

starts to withdraw heat from the cold reservoir and transfer heat into the hot reservoir. In

other words, the system starts behaving as a refrigerator at cost of some work.

To summarize, we see the appearance of three different regions of operation for the heat

engine. In region I the engine requires a negative work W < 0 to extract heat from the hot

to the cold reservoir, i.e, the machine operates as a heater. In region II we have a positive

work, W > 0, which means that it acts as a heat engine producing useful work. Finally,

region III corresponds to a refrigerator as we have already discussed early, because we have

an inversion in the heat flow at cost of some work W < 0. These results show that we can

pass through the different regimes by simply increasing a single parameter, the interaction

coupling Vc (which causes the change in r).
1It does not matter which of the ∆’s we fix, the Hamiltonian is symmetric under the change ∆1 ↔ ∆2

(see equation 4.1).
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r

Figure 4.6 As illustrated, we have the heat exchanges of the working medium with
the hot and cold reservoirs (Qh and Qc, respectively), the work W done, the efficiency
η and the Carnot efficiency ηC of the heat engine against the compression ratio r. Heat
transfer between the hot and cold reservoir. A sign inversion on the flow of the heat
happens as we increase the compression ratio r. For this plot, we have chosen the values
Vh = 10µeV,∆1 = 10µeV,∆2 = 3µeV, Th = 2µeV, Tc = 1µeV. The values of Qh, Qc and
W are given in units of µeV.

Notice that the two points where the green curve of the work done intersects the r-axis in

the figure 4.6 have different meanings: the first one has to do with the equality in modulus

of the heat Qh and Qc (see equation 4.16), i.e, all of the heat absorbed from the hot reservoir

is released to the cold reservoir, and the second one has to do with the total interruption

of the heat transferred to both reservoirs. This interruption can be explained through the

occupation probabilities phn = exp(−Eh
n/kTh)/Zh and pcn = exp(−Ec

n/kTc)/Zc, where we can

see in the figure 4.7 that there is a point where the occupation probabilities curves for the

hot and cold heat baths intersects, which means that in this regime there is no change on

the occupation probabilities of the system when it passes from the hot heat bath to the cold

heat bath, what causes the interruption of the heat flux.

After zooming the figure 4.6, we can extract additional information about the “point”

that causes the divergence on the efficiency plot. First of all, as we can see from the figure 4.8,
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Figure 4.7 The occupation probabilities curves for the ground and first excited state in
the two situations are shown, when the system is in contact with the hot heat bath and the
cold heat bath. The probabilities curves for higher excited states are omitted because their
values are close to zero for this values that we take, to know, Vh = 10µeV,∆2 = 3µeV, Th =
2µeV, Tc = 1µeV and r = 2.67, which is approximately the value of the compression ratio
where the inversion of the heat fluxes occurs in figure 4.6.

there is no such a thing as a point that simultaneously inverts the signs of the heat exchanged

Qh and Qc. Before the efficiency explodes, the work tends to zero, and so the efficiency, where

over again we have the heat pump regime. After an almost infinitesimal increase on r, there

is an explosive increase in efficiency to infinity due to the total interruption of the heat

flow Qh (remember that η = W/Qh). After this point, the system does not immediately

starts behaving as a refrigerator, we have a tiny region where the machine consumes work

and exhaust heat for both reservoirs (we use here the notations of the Ref. [116] for the

two different kinds of heat pump, to know, heater I for the usual heater and heater II

for the machine that heats both reservoirs, see also Ref. [117]). Only after that, we will

have a positive heat flow from the cold reservoir to the system turning the machine into a

refrigerator.
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Figure 4.8 In (a) we have the work done W (green), the heat absorbed Qh (red) and
released Qc (blue) against the compression ratio r: the observed behaviour remind us
something like a phase transition. In (b), the efficiency η (solid curve) and the Carnot
efficiency ηc (dashed horizontal curve) against the compression ratio r are depicted: it
is observed a drastic fall intersecting the r-axis and continuing to negative values till Qh
goes to zero, where the efficiency explodes to infinity. We keep the same values, as usual,
Vh = 10,∆1 = 10,∆2 = 3, kTh = 2, kTc = 1. The values of Qh, Qc and W are given in
units of µeV.

4.3.3 The refrigerator regime

Region III

Refrigerator

Figure 4.9 As illustrated, we have the heat exchanges of the working medium with the
hot and cold reservoirs (Qh and Qc, respectively), the work done and the COP ε of the
refrigerator against the compression ratio r. To plot this graph we have chosen the values
Vh = 10µeV,∆1 = 10µeV,∆2 = 3µeV, Th = 2µeV, Tc = 1µeV. The values of Qh, Qc and
W are given in units of µeV.
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After the point where the heat fluxes are inverted that we discussed previously, the

machine starts behaving as a refrigerator, thus we can evaluate the COP for it. Similarly,

as before, we make plots containing all the important information about the refrigerator at

this stage. This is carried out in figure 4.9 where we put the heat transferred to the hot and

the cold reservoirs, the work done, the COP of a Carnot refrigerator, and the COP against

the compression ratio r. It is important to mention that the definition of COP is only valid

in region III (see figure 4.8). Note that the COP is a monotonically decreasing function of

the compression ratio.

4.3.4 The influence of the quantum tunneling

Early we have restricted ourselves to the case where there is no change on the tunneling

parameters ∆1 and ∆2. Although we have found some interesting features for the heat

engine, still nothing too different from the classical one was observed. As it is well known,

quantum tunneling is not predicted by the laws of classical mechanics: for a particle to

surpass a potential barrier it is required potential energy. In the light of recent papers,

in particular, the Klimovsky work [118], we can extract some unexpected features of our

machine if we consider the quantum tunneling. For instance, we observe a regime where

work can be extracted for unchanged Coulomb coupling, which we considered to define the

compression ratio. This can be achieved by varying some gate voltages that control the

tunneling parameters of the DQDs.

The classical Otto engine assumes the efficiency ηO = 1 − 1
rγ−1 , γ = Cp/Cv being the

specific heat ratio and r the compression ratio. Note that for r = 1 the efficiency goes to

zero and if r < 1 the efficiency becomes negative corresponding to the heater regime. This

is exactly what happens if we keep ∆c
1 = ∆h

1 and ∆c
2 = ∆h

2 , which is depicted in the blue

curves of figure 4.10, thereat we will refer this particular case as the classical case. At this

point we can abandon the constraint we made before and consider ∆h
1 6= ∆c

1 and ∆h
2 6= ∆c

2,
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so that new parameters δ1 = ∆c
1/∆

h
1 and δ2 = ∆c

2/∆
h
2 can be defined. The full description

of the operation modes of the engine is no longer described by a single compression ratio r,

but by the set of parameters {r, δ1, δ2}. Figures 4.10.(a) and 4.10.(c) shows us a plot for

the efficiency normalized to the Carnot efficiency ηN = η/ηc in terms of r for some different

values of the quantities δ1 and δ2, and figures 4.10.(b) and 4.10.(d) shows us a plot for the

coefficient of performance normalized to the Carnot COP εN = ε/εC , with εC being the

Carnot COP, for the same set of parameters values used in (a) and (c), respectively.

Let us take a deeper look in figure 4.10.(a). In the red curve, which corresponds to the

case where δ1 = 1 and δ2 < 1, it is observed an enhancement in the efficiency for lower values

of r in comparison to the classical case. As a consequence, no heat pump regime appears,

which means that the heater was changed to a highly efficient engine and we now have a

positive efficiency even for unchanged Coulomb coupling, for which r ≡ 1. Also, the point of

inversion from heat engine to refrigerator is shifted to a lower value of r. On the other hand,

when δ1(2) > 1 (green curve), we have a larger region for the operation of the heat pump, and

the point of inversion from heat engine to refrigerator is also shifted, but to a higher value

of r instead. This means that the efficiency is reduced for lower values of r in comparison

to the classical case, but part of the region that previously described the refrigerator is now

valid for a highly efficient engine.

In the figure 4.10.(c), the magenta curve, which corresponds to the case where δ1 > 1 and

δ2 < 1, is a stretching of the blue curve. There is an expansion of the operation of the heat

engine in both directions, taking the old heater regime and also part of the old refrigerator

regime. On the other hand, the orange curve, which corresponds to the case where δ1 < 1

and δ2 > 1, is a squeezing of the blue curve. All of the regime of operation for the heat

engine is compressed in a shorter interval of the compression ratio r in comparison to the

classical case.

The figures 4.10.(b) and 4.10.(d) illustrate the normalized COP of the refrigerator com-

plementing the normalized efficiency plots. When the efficiency function finds a maximum,
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a) b)
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c) d)

Figure 4.10 In (a), it is depicted the normalized efficiency ηN and in (b), it is shown
the normalized COP εN curve. It is considered in both of them δ1 = 1: the classical case
(δ2 = 1, blue), the δ2 > 1 case (with ∆c

2 = 4µeV, green) and the δ2 < 1 case (with ∆c
2 =

2µeV, red). In (c) and in (d), we have the normalized efficiency ηN and the normalized
COP εN , respectively: the classical case (δ1 = δ2 = 1) in blue, the stretched magenta
curve for δ1 > 1 and δ2 < 1 (with ∆c

1 = 18µeV and ∆c
2 = 2µeV) and the squeezed orange

curve for δ1 < 1 and δ2 > 1 (with ∆c
1 = 7µeV and ∆c

2 = 4µeV). For all the plots we have
set Vh = 10µeV,∆h

1 = 10µeV,∆h
2 = 3µeV, Th = 2µeV, Tc = 1µeV. We observe a shift of

the curve to the left (right) in comparison to the classical case when we have δ1(2) < 1
(δ1(2) > 1) individually or we can have a stretching (squeezing) for the left and right if we
have δ1 > 1 and δ2 < 1 (δ1 < 1 and δ2 > 1) simultaneously, where δ1(2) stands for “δ1 or
δ2”.

the inversion of the heat fluxes occurs and the engine starts behaving as a refrigerator. The

colors used are the same as in (a) and (c) since the set of parameter values used are also the

same.

In short, we have shown that a quantum Otto engine with two coupled DQDs as a working
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medium may show different performances by tuning the tunneling parameters ∆1 and ∆2

withal the Coulomb potential. We have observed the possibility of work extraction even

for the case where the Coulomb coupling is kept constant. Moreover, we have observed the

change in the operation mode of the machine as well.

4.3.5 Beyond two-level approach

If we increase the temperatures of the reservoirs, the most excited states in the system

become more relevant. For the following plots, we fix the temperatures of the reservoirs

as Th = 20µeV, Tc = 10µeV (figure 4.3 confirms that this is enough to leave the two-level

approach). In this limit, there is no sign inversion for the fluxes of heat exchanged with the

reservoirs as we can see in figure 4.11.(a). The machine will never turn into a refrigerator,

which sustains our explanation from the figure 4.7 where the inversion of the flow of the heat

occurs because of the inversion on the occupation probabilities. Figure 4.11.(b) shows that

the machine presents unusual properties even without varying the tunneling parameters,

although no work can be done for r ≡ 1. In the region r < 1, the machine behaves as a heat

engine producing useful work, and for r > 1 the machine will be a heat pump.
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a)

Figure 4.11 In (a) we have the heat exchanged with the hot (red curve) and cold
(blue curve) reservoirs and in (b) it is depicted the work done (green curve) and the
efficiency (black curve) against the compression ratio r. We have fixed Vh = 10µeV,∆h

1 =
10µeV,∆h

2 = 3µeV, Th = 20µeV, Tc = 10µeV. The values of Qh, Qc and W are given in
units of µeV.
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Chapter Five

Conclusions

This research aimed to address a theoretical proposal for a quantum heat machine with

two coupled double quantum dots interacting via Coulomb interaction of excess electrons

inside each double quantum dot, which in turn acts as our charged qubits. By analyzing the

corresponding quantum Otto cycle in the equilibrium regime, we have shown the appearance

of different regions of operation for our machine: the heat pump, the heat engine, and the

refrigerator. These operation modes can be switched by adjusting the value of the interaction

coupling. We also discussed why these transitions occur and what is truly happening with the

machine in the null work points. We have observed that the performance of both the engine

and the refrigerator can be modified due to the manipulation of the parameters that account

for the quantum tunneling of the electrons in the double quantum dots. The experimental

description of our model is minutely described from the construction of the quantum dots

with the heterostructures to the experimental parameters used in the engine.

This dissertation intended to be self-sufficient with the addition of a broader review on

thermodynamics and statistical mechanics at an undergraduate level, but there are also

engaging discussions about more recent developments in the field generally absent in the

undergraduate textbooks.

The foundations of quantum thermodynamics are still a hot topic of debate that is

constantly being refined, this way a more current review is always very welcome. This
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dissertation gives a classification of the laws of quantum thermodynamics from different

perspectives followed by the description of quantum thermal engines in different regimes of

operation. Some of the latest results in the field were included in the review.

Although some ideal conditions were imposed on our proposed engine like the equilibrium

condition during the whole cycle and no description of the couplings with the heat baths

were specified, the possibility of an experimental realization of the machine is not totally out

of the question since we have used a very usual experimental setup together with plausible

parameters values. Thus, this research opens questions for possible future works, like how

the coupling with the heat baths could affect the engine and how time can play a role in the

thermodynamic processes.
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